基于MATLAB仿真的杨氏双缝干涉
1.双缝干涉的原理
- 首先上杨氏双缝干涉的原理图`,在关注几个必要的参数。(d:两缝间距;D:缝到屏的距离;θ:倾角很小旁轴近似(D>>d,tanθ≈sinθ);设光程差为δ)
- P点的光强I§为两光相干叠加的结果,相干叠加公式如下:
设位相为φ,则φ=2πδ/λ。先假设光源是单色光源,且S、S1、S2都很小可视为点孔,且S1、S2分居在以S为中轴线两侧,则由相干叠加知观察屏上的光强分布为其中,φ为相位=2πδ/λ,I1为经过S1后的光强,I2为经过S2后的光强(设I1=I2),则可以将I§化为

- 计算相位差,对于光程差δ,δ=L1-L2,设观察屏上P点坐标为x,在傍轴区(D>>d),可将L1+L2≈2D,即可得δ=L1-L2=xd/D,则由几何关系得:
2.MATLAB代码
close all;
clear;
%第一部分输入必要的参数
lambda=input('输入光的波长(单位nm):');
lambda=lambda*1e-9;%将nm换算到m
d=input('输入两个缝的间距(单位mm):');
d=d*0.001;%将mm换算到m
D=input('输入缝到屏的距离(单位m):');
%第二部分输入必要的参数
xMax=5*lambda*D/d;%xMax为观察屏上的最大视野,取其为5倍△x
N=1001;%N表示步数
x=linspace(-xMax,xMax,N);%x表示观察屏上P点坐标,
%第三部用相干叠加求相干光强
for i=1:N
L1=sqrt((x(i)-d/2).^2+D^2);%L1为S1点孔发出的光至观察屏的光程
L2=sqrt((x(i)+d/2).^2+D^2);%L2为S2点孔发出的光至观察屏的光程
Phi=2*pi*(L2-L1)/lambda;%phi即φ,φ=2π·δ/λ为相位差,δ=L2-L1为光程差
I(i,:)=4*cos(Phi/2).^2;%I表示光强分布,I(i,:)表示矩阵I第i行所有元素
end
%第四部将光强分布转化为灰度图
graylevel=255;%灰度等级为255
Ir=(I/4.0)*graylevel;%将光强I先归一化,再“归255化”
subplot(1,2,1),image(xMax,x,Ir);
colormap(gray(graylevel)),title('条纹图')%colormap(map) 用map矩阵映射当前图形的色图
subplot(1,2,2),plot(I(:),x),title('光强分布')
3.结果展示
输入的各个参数:
输出的结果:
结论:
1.干涉明条纹的位置可由干涉极大条件d=kλ得:x=(L/d)kλ,干涉暗条纹位置可由干涉极小条件d=(k+1/2)λ得:x=(D/d)(k+1/2)λ。
2.明条纹之间、暗条纹之间距都是Δx =λ(D/d),干涉条纹是等距离分布的。
3.而且注意上面的公式都有波长参数在里面,波长越长,相差越大。
4.条纹形状:为一组与狭缝平行、等间隔的直线(干涉条纹特点)菲涅尔双棱镜,菲涅尔双面镜、埃洛镜的干涉情况都与此类似。
后记、、、若改为复色光干涉结果如下
clear;
lambda=input('输入光的中心波长(单位nm):');
lambda=lambda*1e-9;%将nm换算到m
d=input('输入两个缝的间距(单位mm):');
d=d*0.001;%将mm换算到m
D=input('输入缝到屏的距离(单位m):');
xMax=5*lambda*D/d;%xMax为观察屏上的最大视野,取其为5倍△x
N=1000;%N表示个数
x=linspace(-xMax,xMax,N);%x表示观察屏上P点坐标,
%用相干叠加求相干光强
for i=1:N
L1=sqrt((x(i)-d/2).^2+D^2);%L1为S1点孔发出的光至观察屏的光程
L2=sqrt((x(i)+d/2).^2+D^2);%L2为S2点孔发出的光至观察屏的光程
%Phi=2*pi*(L2-L1)/lambda;%phi即φ,φ=2π·δ/λ为相位差,δ=L2-L1为光程差
%I(i,:)=4*cos(Phi/2).^2;%I表示光强分布,I(i,:)表示矩阵I第i行所有元素
n=10;dlamda=linspace(-0.1,0.1,n);%dlamda为波长宽度范围
Lambda=lambda*(1+dlamda');%得到一系列波长
Phi=2*pi*(L2-L1)./Lambda;%得到一系列相位
I(i,:)=sum(4*cos(Phi/2).^2)/n;%sum表示不同频率光强非相干叠加,并归一化
end
%将光强分布转化为灰度图
graylevel=255;%灰度等级为255
Ir=(I/4.0)*graylevel;%将光强I先归一化,再“归255化”
subplot(1,2,1),image(xMax,x,Ir);
colormap(gray(graylevel)),title('条纹图')
%colormap(map) 用map矩阵映射当前图形的色图
subplot(1,2,2),plot(I(:),x),title('光强分布')
输入的参数:
得到的结果:
白光产生彩色的干涉条纹
结论:随条纹极次绝对值升高,不同频率的单色波在观察屏上趋向于你来我往的相互填平,而不再像零级条纹那样步调一致地相长相消,导致干涉效应逐渐减弱,条纹衬比度显著下降。仿真结果与实验结果一致。
(引用b站光电面壁人,https://www.bilibili.com/read/cv9217066,本人小白学习中)