分类度量指标

医学图像的二分类问题

针对一个二分类问题,我们将实例分成正类(positive)(阳性即有病、恶性)和(negative)(阴性即无病、良性)两种。

混淆矩阵(confusion matrix)

在实际的预测过程中会出现,会出现以下四种情况:

  • 真阳性(true positive, TP):预测出来是阳性,实际也为阳性的数目
  • 假阳性(false positive, FP):预测出来时阳性,实际为阴性的数目 (误诊)
  • 真阴性(true Negative, TN):预测出来是阴性,实际也为阴性的数目
  • 假阴性 (false Negative, FN):预测出来是阴性,实际为阳性的数目(漏诊)

混淆矩阵指的是以上四种情况相互之间的关系,其实就是一个表格,https://blog.csdn.net/super_he_pi/article/details/82772433 中有详细的介绍
详细图解
其中重要的概念定义
其中重要的概念定义如下:

  • 真阳性率 (TPR)灵敏度(sensitivity) 又称为 召回率(recall)简单来说就是分类模型能够诊断出实际为恶性的病例中的多少病例
  • 真阴性率 (TNR) 特异度(specificity) 简单说就是诊断出的阴性病例占总阴性病例的多少
  • 假阴性率(FNR)也被称为漏诊率 =1-灵敏度 阳性病例没能检查出来
  • 假阳性率 (FPR)也被称为误诊率=1-特异度 阴性被检查成阳性
  • 准确率(accuracy)是对整个分类模型来说的,指诊断对的病例占总病例的多少
  • 精准率(precision)指检查出的真阳性病例占诊断出的所有的阳性病例的多少
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值