医学图像的二分类问题
针对一个二分类问题,我们将实例分成正类(positive)(阳性即有病、恶性)和(negative)(阴性即无病、良性)两种。
混淆矩阵(confusion matrix)
在实际的预测过程中会出现,会出现以下四种情况:
- 真阳性(true positive, TP):预测出来是阳性,实际也为阳性的数目
- 假阳性(false positive, FP):预测出来时阳性,实际为阴性的数目 (误诊)
- 真阴性(true Negative, TN):预测出来是阴性,实际也为阴性的数目
- 假阴性 (false Negative, FN):预测出来是阴性,实际为阳性的数目(漏诊)
混淆矩阵指的是以上四种情况相互之间的关系,其实就是一个表格,https://blog.csdn.net/super_he_pi/article/details/82772433 中有详细的介绍
其中重要的概念定义如下:
- 真阳性率 (TPR)灵敏度(sensitivity) 又称为 召回率(recall)简单来说就是分类模型能够诊断出实际为恶性的病例中的多少病例
- 真阴性率 (TNR) 特异度(specificity) 简单说就是诊断出的阴性病例占总阴性病例的多少
- 假阴性率(FNR)也被称为漏诊率 =1-灵敏度 阳性病例没能检查出来
- 假阳性率 (FPR)也被称为误诊率=1-特异度 阴性被检查成阳性
- 准确率(accuracy)是对整个分类模型来说的,指诊断对的病例占总病例的多少
- 精准率(precision)指检查出的真阳性病例占诊断出的所有的阳性病例的多少