设顺序存储的二叉树中有编号为i和j的两个结点,请设计算法求出它们最近的公共祖先结点的编号和值。
输入格式:
输入第1行给出正整数n(≤1000),即顺序存储的最大容量;第2行给出n个非负整数,其间以空格分隔。其中0代表二叉树中的空结点(如果第1个结点为0,则代表一棵空树);第3行给出一对结点编号i和j。
题目保证输入正确对应一棵二叉树,且1≤i,j≤n。
输出格式:
如果i或j对应的是空结点,则输出ERROR: T[x] is NULL,其中x是i或j中先发现错误的那个编号;否则在一行中输出编号为i和j的两个结点最近的公共祖先结点的编号和值,其间以1个空格分隔。
输入样例1:
15
4 3 5 1 10 0 7 0 2 0 9 0 0 6 8
11 4
输出样例1:
2 3
输入样例2:
15
4 3 5 1 0 0 7 0 2 0 9 0 0 6 8
12 8
输出样例2:
ERROR: T[12] is NULL
成功代码:
#include<stdio.h>
int findFather(int n, int m);
int main(void)
{
int binTree[1011] = { '\0' };//顺序树
int N;
int result = 0;
scanf("%d", &N);//输入树的容量
int i = 0;
for (i = 0; i < N; i++)
{
scanf("%d", &binTree[i]);
}
int num_1 = 0, num_2 = 0;
scanf("%d %d", &num_1, &num_2);//输入寻找结点的位置
result = findFather(num_1, num_2);//调用函数
if (num_1 == num_2)//当寻找重合结点时
printf("%d %d\n", num_1, binTree[num_1 - 1]);
else if (binTree[num_1 - 1] == 0)//当寻找的结点不存在时
printf("ERROR: T[%d] is NULL\n", num_1);
else if (binTree[num_2 - 1] == 0)
printf("ERROR: T[%d] is NULL\n", num_2);
else
printf("%d %d\n", result, binTree[result - 1]);
return 0;
}
int findFather(int n, int m)
{/*因为一个树节点的根节点是其所在位置的/2的位置上,所以可以使用类似二分查找的方法来完成共同根节点的查找*/
while (1) {
if (n > m)//二分法查找
n /= 2;
else
m /= 2;
if (n == m)
break;
}
return n;
}