给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22 输出:true 解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5 输出:false 解释:树中存在两条根节点到叶子节点的路径: (1 --> 2): 和为 3 (1 --> 3): 和为 4 不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0 输出:false 解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
- 树中节点的数目在范围
[0, 5000]
内 -1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
我在这道题目里面考虑的是用回溯的方法,用数组总和和targetnum进行比较!
效率不高,但是可以学习一下回溯的思想!
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void get_taget(TreeNode*root,int targetSum,bool& j,vector<int>& path){
if(root == nullptr) return ;
path.push_back(root->val);
if(root->left==nullptr&&root->right==nullptr) { //中
int b=0;
for (int i = 0; i < path.size(); ++i) {
b += path[i];
}
if(b == targetSum) j=true;
}
//左
if(root->left != nullptr) {
get_taget(root->left,targetSum,j,path);
path.pop_back(); //回溯
}
//右
if(root->right != nullptr) {
get_taget(root->right,targetSum,j,path);
path.pop_back(); //回溯
}
}
bool hasPathSum(TreeNode* root, int targetSum) {
bool j =false;
vector<int> path; //回溯的数组需要是全局,不然会导致每次的数组进行再一次初始化,导致错误,因此在递归里面,做逻辑的那个值是全局性很重要,这个很值得去思考!
get_taget(root,targetSum,j,path);
return j;
}
};