背包问题题谱
1、完全背包问题
1.问题描述
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
要点
- 每种物品都有无限个
- 总体积不超过V
- 总价值最大
2. 分析
按照第i个物品选几个将集合进行划分。
按照上面的图可以这样表示出
- 第i种物品1件物品都不选 f[i - 1][j]
- 第i种物品选1件 f[i - 1][ j - v[i]] + w[i]
- 第i种物品选2件 f[i - 1][ j - v[i] * 2] + w[i] * 2
- …
- 第i种物品选k件 f[i - 1][ j - v[i] * k] + w[i] * k
问题的属性是 最大值,则f[i,j]可以表示如下
f [ i , j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] + w [ i ] , f [ i − 1 ] [ j − v [ i ] ∗ 2 ] + w [ i ] ∗ 2 , f [ i − 1 ] [ j − v [ i ] ∗ 3 ] + w [ i ] ∗ 3 , . . . f [ i − 1 ] [ j − v [ i ] ∗ k ] + w [ i ] ∗ k ) f[i,j] = max(f[i - 1][j],f[i - 1][j - v[i]] + w[i],f[i - 1][j - v[i] * 2] + w[i] * 2, f[i - 1][j - v[i] * 3] + w[i] * 3,...f[i - 1][j - v[i] * k] + w[i] * k) f[i,j]=max(f[i−1][j],f[i−1][j−v[i]]+w[i],f[i−1][j−v[i]∗2]+w[i]∗2,f[i−1][j−v[i]∗3]+w[i]∗3,...f[i−1][j−v[i]∗k]+w[i]∗k) (1)
我们观察(2)式如下
f
[
i
,
j
−
v
[
i
]
]
=
m
a
x
(
f
[
i
−
1
]
[
j
−
v
[
i
]
]
,
f
[
i
−
1
]
[
j
−
v
[
i
]
∗
2
]
+
w
[
i
]
,
f
[
i
−
1
]
[
j
−
v
[
i
]
∗
3
]
+
w
[
i
]
∗
2
,
.
.
.
f
[
i
−
1
]
[
j
−
v
[
i
]
∗
k
]
+
w
[
i
]
∗
(
k
−
1
)
)
f[i,j - v[i]] = max( f[i - 1][j - v[i]] ,f[i - 1][j - v[i] * 2] + w[i] , f[i - 1][j - v[i] * 3] + w[i] * 2,...f[i - 1][j - v[i] * k] + w[i] * (k - 1))
f[i,j−v[i]]=max(f[i−1][j−v[i]],f[i−1][j−v[i]∗2]+w[i],f[i−1][j−v[i]∗3]+w[i]∗2,...f[i−1][j−v[i]∗k]+w[i]∗(k−1))(2)
将(2)式代入(1)式有
f
[
i
,
j
]
=
m
a
x
(
f
[
i
−
1
]
[
j
]
,
f
[
i
,
j
−
v
[
i
]
]
+
w
[
i
]
)
f[i,j] = max(f[i - 1][j],f[i,j - v[i]] + w[i])
f[i,j]=max(f[i−1][j],f[i,j−v[i]]+w[i])
3.代码
与01背包问题的基础问题一样,f[i,j]也可以使用一维数组进行表示
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int w[N],v[N],f[N];
int main()
{
int n,m;
cin >> n >> m;
for(int i = 1; i <= n; i ++)
{
cin >> v[i] >> w[i];
}
for(int i = 1; i <= n; i ++)
{
//f[j] = max(f[j],f[j - v[i]] + w[i]);
//其原本的代码是f[i][j] = max(f[i-1][j],f[i][j - v[i]] + w[i])
//可以看到,f[j]需要的是i层的f[j - v[i]进行更新
//这里要从小到大进行遍历,由于j - v[i] < j,所以会先于j进行更新,更新后f中存储的f[j - v[i]]就是第i层的了,这正是我们想要的。此时j由于小于j - v[i],还是i - 1层的。
for(int j = v[i]; j <= m; j ++)
{
f[j] = max(f[j],f[j - v[i]] + w[i]);
}
}
cout << f[m];
}