第一章 动态规划 背包问题之完全背包问题

背包问题题谱

在这里插入图片描述

1、完全背包问题

1.问题描述

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

要点

  1. 每种物品都有无限个
  2. 总体积不超过V
  3. 总价值最大

2. 分析

在这里插入图片描述
按照第i个物品选几个将集合进行划分。
按照上面的图可以这样表示出

  1. 第i种物品1件物品都不选 f[i - 1][j]
  2. 第i种物品选1件 f[i - 1][ j - v[i]] + w[i]
  3. 第i种物品选2件 f[i - 1][ j - v[i] * 2] + w[i] * 2
  4. 第i种物品选k件 f[i - 1][ j - v[i] * k] + w[i] * k

问题的属性是 最大值,则f[i,j]可以表示如下

f [ i , j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] + w [ i ] , f [ i − 1 ] [ j − v [ i ] ∗ 2 ] + w [ i ] ∗ 2 , f [ i − 1 ] [ j − v [ i ] ∗ 3 ] + w [ i ] ∗ 3 , . . . f [ i − 1 ] [ j − v [ i ] ∗ k ] + w [ i ] ∗ k ) f[i,j] = max(f[i - 1][j],f[i - 1][j - v[i]] + w[i],f[i - 1][j - v[i] * 2] + w[i] * 2, f[i - 1][j - v[i] * 3] + w[i] * 3,...f[i - 1][j - v[i] * k] + w[i] * k) f[i,j]=max(f[i1][j],f[i1][jv[i]]+w[i],f[i1][jv[i]2]+w[i]2,f[i1][jv[i]3]+w[i]3,...f[i1][jv[i]k]+w[i]k) (1)

我们观察(2)式如下
f [ i , j − v [ i ] ] = m a x ( f [ i − 1 ] [ j − v [ i ] ] , f [ i − 1 ] [ j − v [ i ] ∗ 2 ] + w [ i ] , f [ i − 1 ] [ j − v [ i ] ∗ 3 ] + w [ i ] ∗ 2 , . . . f [ i − 1 ] [ j − v [ i ] ∗ k ] + w [ i ] ∗ ( k − 1 ) ) f[i,j - v[i]] = max( f[i - 1][j - v[i]] ,f[i - 1][j - v[i] * 2] + w[i] , f[i - 1][j - v[i] * 3] + w[i] * 2,...f[i - 1][j - v[i] * k] + w[i] * (k - 1)) f[i,jv[i]]=max(f[i1][jv[i]],f[i1][jv[i]2]+w[i],f[i1][jv[i]3]+w[i]2,...f[i1][jv[i]k]+w[i](k1))(2)
在这里插入图片描述

将(2)式代入(1)式有
f [ i , j ] = m a x ( f [ i − 1 ] [ j ] , f [ i , j − v [ i ] ] + w [ i ] ) f[i,j] = max(f[i - 1][j],f[i,j - v[i]] + w[i]) f[i,j]=max(f[i1][j],f[i,jv[i]]+w[i])

3.代码

与01背包问题的基础问题一样,f[i,j]也可以使用一维数组进行表示

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int w[N],v[N],f[N];

int main()
{
    int n,m;
    cin >> n >> m;
    for(int i = 1; i <= n; i ++)
    {
        cin >> v[i] >> w[i];
    }
 
    for(int i = 1; i <= n; i ++)
    {
    	//f[j] = max(f[j],f[j - v[i]] + w[i]);
    	//其原本的代码是f[i][j] = max(f[i-1][j],f[i][j - v[i]] + w[i])
    	//可以看到,f[j]需要的是i层的f[j - v[i]进行更新
    	//这里要从小到大进行遍历,由于j - v[i] < j,所以会先于j进行更新,更新后f中存储的f[j - v[i]]就是第i层的了,这正是我们想要的。此时j由于小于j - v[i],还是i - 1层的。
    	for(int j = v[i]; j <= m; j ++)
        {
            f[j] = max(f[j],f[j - v[i]] + w[i]);
        }
    }
    cout << f[m];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值