1、题目描述
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示:
0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成
2、思路
动态规划。f[i][j]代表的是word1的前i个字符转换成word2的前j个字符的所有的可能操作的这个集合中操作次数最小的一个。
我们可以把这个集合分成三个部分。第一个部分使用插入操作。当使用插入操作的时候,需要word1的前i个字符和word2的前j - 1个字符相匹配,此时只需要再插入一个字符和j匹配即可。而实现word1的前i个字符和word2的前j - 1个字符相匹配的最少操作次数为f[i][j - 1],再加上本次插入操作即+1。
同理 删除操作使用的最少次数为f[i - 1][j] + 1.
替换比较特殊,当word1[i] == word2[j]的时候不需要替换,则其最小操作次数为f[i - 1][j - 1]。否则需要进行一次替换为f[i - 1][j - 1] + 1。
f[i][j]为上面三种情况中的最小值。
3、代码
class Solution {
public:
int minDistance(string word1, string word2) {
int n = word1.size();
int m = word2.size();
vector<vector<int> > f(n + 1, vector<int> (m + 1));
//注意初始化,当word1长度为0的时候,变成word2需要做相应次数的插入操作,反之亦然。
for(int i = 1; i <= m; i ++) f[0][i] = i;
for(int i = 1; i <= n; i ++) f[i][0] = i;
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= m; j ++)
{
f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
f[i][j] = min(f[i][j],f[i - 1][j - 1] + (word1[i - 1] == word2[j - 1] ? 0 : 1));
}
}
return f[n][m];
}
};
参考资料
https://www.acwing.com/activity/content/code/content/62472/