1、题目描述
路径 被定义为一条从树中任意节点出发,沿父节点-子节点连接,达到任意节点的序列。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。
路径和 是路径中各节点值的总和。给你一个二叉树的根节点 root ,返回其 最大路径和 。
示例 1:
输入:root = [1,2,3]
输出:6
解释:最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6
示例 2:
输入:root = [-10,9,20,null,null,15,7]
输出:42
解释:最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42
提示:
树中节点数目范围是 [1, 3 * 10^4]
-1000 <= Node.val <= 1000
2、思路
利用递归回溯,将每个节点能给上级路径带来的最大收益返回,例如示例2中,20这个节点,他能带给父节点的最大收益就是20 -> 15这条路,所以将给上级返回35。如果最大收益小于0,那么直接返回0,相当于父节点可以不选择该分支。
同时,每个节点用经过本节点的最大路径的值更新全局解。从而获得答案。
3、代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
//全局答案
int ans = -0x3f3f3f3f;
int dfs(TreeNode* root)
{
if(root == nullptr) return 0;
//获取左右节点能提供的最大正收益
int left = dfs(root -> left);
int right = dfs(root -> right);
// 更新结果,也就是用经过本节点的路径最大值来更新全局答案
ans = max(ans, root -> val + left + right);
// 返回本节点能够向上提供的 最大的一条直路径的长度
return max(0, root -> val + max(left,right));
}
int maxPathSum(TreeNode* root) {
dfs(root);
return ans;
}
};