【大模型学习】第一章 大模型技术综述

目录

摘要

1. 大模型的定义与特点

2. 大模型获取智能的机制

2.1 预训练阶段

2.2 微调阶段

2.3 智能体现

3. 大模型的应用业务架构

3.1 自然语言处理(NLP)

3.2 计算机视觉(CV)

3.3 跨模态应用

3.4 行业应用

4. 大模型的技术架构

4.1 模型架构

4.2 训练方法

4.3 硬件支持

4.4 应用接口

5. 结论与展望


摘要

        随着人工智能技术的飞速发展,大模型(Large Model)作为深度学习领域的重要研究成果,已经在自然语言处理(NLP)、计算机视觉(CV)、跨模态理解和生成等领域展现出强大的能力和应用潜力。本文从大模型的定义、智能获取机制、应用业务架构以及技术架构四个方面进行综述,旨在为相关领域的研究和实践提供参考。

1. 大模型的定义与特点

        大模型指的是参数规模达到十亿量级(10^9)甚至更高的深度学习模型。这些模型通常基于Transformer架构,具有强大的特征提取和生成能力。与传统的小型模型相比,大模型的特点如下:

  • 参数规模大:大模型通过增加参数数量来提升表达能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

好多渔鱼好多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值