Flink 1.13 超详细<上>(部署、运行时架构、DataStream API基础、时间、窗口、处理函数、多流转换 )

第一章 Flink简介

1.1 Flink 的源起和设计理念

  • Flink 起源于一个叫作 Stratosphere 的项目,它是由 3 所地处柏林的大学和欧洲其他一些大学在 2010~2014 年共同进行的研究项目,由柏林理工大学的教授沃克尔·马尔科(Volker Markl)领衔开发。2014 年 4 月,Stratosphere 的代码被复制并捐赠给了 Apache 软件基金会,Flink 就是在此基础上被重新设计出来的。
  • 在德语中,“flink”一词表示“快速、灵巧”。项目的 logo 是一只彩色的松鼠,当然了,
    这不仅是因为 Apache 大数据项目对动物的喜好(是否联想到了 Hadoop、Hive?),更是因为松鼠这种小动物完美地体现了“快速、灵巧”的特点。关于 logo 的颜色,还一个有趣的缘由:柏林当地的松鼠非常漂亮,颜色是迷人的红棕色;而 Apache 软件基金会的 logo,刚好也是一根以红棕色为主的渐变色羽毛。于是,Flink 的松鼠 Logo 就设计成了红棕色,而且拥有一个漂亮的渐变色尾巴,尾巴的配色与 Apache 软件基金会的 logo 一致。这只松鼠色彩炫目,既呼应了 Apache 的风格,似乎也预示着 Flink 未来将要大放异彩。Flink 的 Logo 如图
    图 1-1 Flink 的 Logo 图

从命名上,我们也可以看出 Flink 项目对于自身特点的定位,那就是对于大数据处理,要
做到快速和灵活。

Flink发展时间线:

  • 2014 年 8 月,Flink 第一个版本 0.6 正式发布(至于 0.5 之前的版本,那就是在
    Stratosphere 名下的了)。与此同时 Fink 的几位核心开发者创办了 Data Artisans 公司,
    主要做 Fink 的商业应用,帮助企业部署大规模数据处理解决方案。
  • 2014 年 12 月,Flink 项目完成了孵化,一跃成为 Apache 软件基金会的顶级项目。
  • 2015 年 4 月,Flink 发布了里程碑式的重要版本 0.9.0,很多国内外大公司也正是从这
    时开始关注、并参与到 Flink 社区建设的。
  • 2019 年 1 月,长期对 Flink 投入研发的阿里巴巴,以 9000 万欧元的价格收购了 Data
    Artisans 公司;之后又将自己的内部版本 Blink 开源,继而与 8 月份发布的 Flink 1.9.0
    版本进行了合并。自此之后,Flink 被越来越多的人所熟知,成为当前最火的新一代
    大数据处理框架。

Flink 的官网主页地址:https://flink.apache.org/

在这里插入图片描述

在 Flink 官网主页的顶部可以看到,项目的核心目标,是“数据流上的有状态计算”(Stateful
Computations over Data Streams)。

具体定位是:Apache Flink 是一个框架和分布式处理引擎,如图 1-2 所示,用于对无界和
有界数据流进行有状态计算。Flink 被设计在所有常见的集群环境中运行,以内存执行速度和
任意规模来执行计算。

在这里插入图片描述

flink框架处理流程图解

flink主要处理的是数据流,比方说网上有很多实时数据(交易、日志、物联网、点击流)要传输到控制中心做处理、响应。这些源源不断数据flink都是在不停的收集,另外这些数据可以存储到这些数据库、文件系统、键值存储,不管在哪里,flink都是实时读取,一直在做拉数据的操作,然后做各种类型的处理,比如说可以做事件驱动型的应用、可以做其他的流水线处理,后面还可以做流分析或者是批处理的分析(一批数据收集齐可以分析特征、提取特点、统计指标),这个处理过程是实时的,每来一个新的数据都可以得到对应的响应(因为它是事件驱动的)。最终它可以给应用程序做一个响应,也可以重新把它写入到事件日志里面去,也可以把处理的结果写入到数据库文件系统或者键值存储里面去,这就是flink流处理整体的框架

1.2 Flink 的应用

  • Flink 是一个大数据流处理引擎,它可以为不同的行业提供大数据实时处理的解决方案。
    随着 Flink 的快速发展完善,如今在世界范围许多公司都可以见到 Flink 的身影。
  • 目前在全球范围内,北美、欧洲和金砖国家均是 Flink 的应用热门区域。当然,这些地区
    其实也就是 IT、互联网行业较发达的地区。
  • Flink 在国内热度尤其高,一方面是因为阿里的贡献和带头效应,另一方面也跟中国的应
    用场景密切相关。中国的人口规模与互联网使用普及程度,决定了对大数据处理的速度要求越来越高,也迫使中国的互联网企业去追逐更高的数据处理效率。试想在中国,一个网站可能要面对数亿的日活用户、每秒数亿次的计算峰值,这对很多国外的公司来说是无法想象的。而Flink 恰好给我们高速准确的处理海量流式数据提供了可能。

1.2.1 Flink 在企业中的应用

  • Flink 为全球许多公司和企业的关键业务应用提供了强大的支持。
  • 对于数据处理而言,任何行业、任何公司的需求其实都是一样的:数据规模大、实时性要求高、确保结果准确、方便扩展、故障后可恢复——而这些要求,作为新一代大数据流式处理引擎的 Flink 统统可以满足!这也正是 Flink 在全世界范围得到广泛应用的原因。
  • 以下是 Flink 官网列出的知名企业用户,如图 1-3 所示,他们在生产环境中有各种各样有
    趣的应用。

在这里插入图片描述
![

  • 以大家熟悉的阿里为例。阿里巴巴这个庞大的电商公司,为买方和卖方提供了交易平台。它的个性化搜索和实时推荐功能就是通过 Blink 实现的(当然我们知道,Blink 就是基于 Flink的,现在两者也已合体)。用户所购买或者浏览的商品,可以被用作推荐的依据,这就是为什么我们经常发现“刚看过什么、网站就推出来了”。当用户数据量非常庞大时,快速地分析响应、实时做出精准的推荐就显得尤为困难。而 Flink 这样真正意义上的大数据流处理引擎,就能做到这些。这也是阿里在 Flink 上充分发力并成为引领者的原因。

1.2.2 Flink 主要的应用场景

  • 可以看到,各种行业的众多公司都在使用 Flink,那到底他们用 Flink 来处理什么需求呢?
    换句话说,什么的场景最适合 Flink 大显身手呢?
  • 回到 Flink 本身的定位,它是一个大数据流式处理引擎,处理的是流式数据,也就是“数
    据流”(Data Flow)。顾名思义,数据流的含义是,数据并不是收集好的,而是像水流一样,是一组有序的数据序列,逐个到来、逐个处理。由于数据来到之后就会被即刻处理,所以流处理的一大特点就是“快速”,也就是良好的实时性。Flink 适合的场景,其实也就是需要实时处理数据流的场景。
  • 具体来看,一些行业中的典型应用有:
  1. 电商和市场营销
    举例:实时数据报表、广告投放、实时推荐
  • 在电商行业中,网站点击量是统计 PV、UV 的重要来源,也是如今“流量经济”的最主要
    数据指标。很多公司的营销策略,比如广告的投放,也是基于点击量来决定的。另外,在网站上提供给用户的实时推荐,往往也是基于当前用户的点击行为做出的。
  • 网站获得的点击数据可能是连续且不均匀的,还可能在同一时间大量产生,这是典型的数据流。如果我们希望把它们全部收集起来,再去分析处理,就会面临很多问题:首先,我们需要很大的空间来存储数据;其次,收集数据的过程耗去了大量时间,统计分析结果的实时性就大大降低了;另外,分布式处理无法保证数据的顺序,如果我们只以数据进入系统的时间为准,可能导致最终结果计算错误。
  • 我们需要的是直接处理数据流,而 Flink 就可以做到这一点。
  1. 物联网(IOT)
    举例:传感器实时数据采集和显示、实时报警,交通运输业
  • 物联网是流数据被普遍应用的领域。各种传感器不停获得测量数据,并将它们以流的形式传输至数据中心。而数据中心会将数据处理分析之后,得到运行状态或者报警信息,实时地显示在监控屏幕上。所以在物联网中,低延迟的数据传输和处理,以及准确的数据分析通常很关键。
  • 交通运输业也体现了流处理的重要性。比如说,如今高铁运行主要就是依靠传感器检测数据,测量数据包括列车的速度和位置,以及轨道周边的状况。这些数据会从轨道传给列车,再从列车传到沿途的其他传感器;与此同时,数据报告也被发送回控制中心。因为列车处于高速行驶状态,因此数据处理的实时性要求是极高的。如果流数据没有被及时正确处理,调整意见和警告就不能相应产生,后果可能会非常严重。
  1. 物流配送和服务业
    举例:订单状态实时更新、通知信息推送
  • 在很多服务型应用中,都会涉及订单状态的更新和通知的推送。这些信息基于事件触发,不均匀地连续不断生成,处理之后需要及时传递给用户。这也是非常典型的数据流的处理。
  1. 银行和金融业
    举例:实时结算和通知推送,实时检测异常行为
  • 银行和金融业是另一个典型的应用行业。用户的交易行为是连续大量发生的,银行面对的是海量的流式数据。由于要处理的交易数据量太大,以前的银行是按天结算的,汇款一般都要隔天才能到账。所以有一个说法叫作“银行家工作时间”,说的就是银行家不仅不需要 996,甚至下午早早就下班了:因为银行需要早点关门进行结算,这样才能保证第二天营业之前算出准确的账。这显然不能满足我们快速交易的需求。在全球化经济中,能够提供 24 小时服务变得越来越重要。现在交易和报表都会快速准确地生成,我们跨行转账也可以做到瞬间到账,还可以接到实时的推送通知。这就需要我们能够实时处理数据流。
  • 另外,信用卡欺诈的检测也需要及时的监控和报警。一些金融交易市场,对异常交易行为的及时检测可以更好地进行风险控制;还可以对异常登录进行检测,从而发现钓鱼式攻击,从而避免巨大的损失。

在这里插入图片描述

1.3 流式数据处理的发展和演变

1.3.1 流处理和批处理

  • 数据处理有不同的方式。
  • 对于具体应用来说,有些场景数据是一个一个来的,是一组有序的数据序列,我们把它叫作“数据流”;而有些场景的数据,本身就是一批同时到来,是一个有限的数据集,这就是批量数据(有时也直接叫数据集)。
  • 容易想到,处理数据流,当然应该“来一个就处理一个”,这种数据处理模式就叫作流处理;因为这种处理是即时的,所以也叫实时处理。与之对应,处理批量数据自然就应该一批读入、一起计算,这种方式就叫作批处理,也叫作离线处理。
  • 那真实的应用场景中,到底是数据流更常见、还是批量数据更常见呢?
  • 生活中,这两种形式的数据都有,如图 1-4 所示。比如我们日常发信息,可以一句一句地说,也可以写一大段一起发过去。一句一句的信息,就是一个一个的数据,它们构成的序列就是一个数据流;而一大段信息,是一组数据的集合,对应就是批量数据(数据集)。

在这里插入图片描述

  • 当然,有经验的人都会知道,一句一句地发,你一言我一语,有来有往这才叫聊天;一大段信息直接砸过去,别人看着都眼晕,很容易就没下文了——如果是很重要的整篇内容(比如表白信),写成文档或者邮件发过去可能效果会更好。
  • 所以我们看到,“聊天”这个生活场景,数据的生成、传递和接收处理,都是流式的;而“写信”的场景,数据的生成尽管应该也是流式的(字总得一个个写),但我们可以把它们收集起来,统一传输、统一处理(当然我们还可以进一步较真:处理也是流式的,字得一个一个读)。不论传输处理的方式是怎样的,数据的生成,一般都是流式的。
  • 在 IT 应用场景中,这一点会体现得更加明显。企业的绝大多数应用程序,都是在不停地接收用户请求、记录用户行为和系统日志,或者持续接收采集到的状态信息。所以数据会在不同的时间持续生成,形成一个有序的数据序列——这就是典型的数据流。
  • 所以流数据更真实地反映了我们的生活方式。真实场景中产生的,一般都是数据流。那处理数据流,就一定要用流处理的方式吗?
  • 这个问题似乎问得有点无厘头。不过仔细一想就会发现,很多数据流的场景其实也可以用“攒一批”的方式来处理。比如聊天,我们可以收到一条信息就回一条;也可以攒很多条一起回复。对于应用程序,也可以把要处理的数据先收集齐,然后才一并处理。
  • 但是这样做的缺点也非常明显:数据处理不够及时,实时性变差了。流处理,是真正的即时处理,没有“攒批”的等待时间,所以会更快、实时性更好。
  • 另外,在批处理的过程中,必须有一个固定的时间节点结束“攒批”的过程、开始计算。而数据流是连续不断、无休无止的,我们没有办法在某一时刻说:“好!现在收集齐所有数据了,我们可以开始分析了。”如果我们需要实现“持续计算”,就必须采用流处理的方式,来处理数据流。
  • 很显然,对于流式数据,用流处理是最好、也最合理的方式。
  • 但我们知道,传统的数据处理架构并不是这样。无论是关系型数据库、还是数据仓库,都倾向于先“收集数据”,然后再进行处理。为什么不直接用流处理的方式呢?这是因为,分布式批处理在架构上更容易实现。想想生活中发消息聊天的例子,我们就很容易理解了:如果来一条消息就立即处理,“微信秒回”,这样做一定会很受人欢迎;但是这要求自己必须时刻关注新消息,这会耗费大量精力,工作效率会受到很大影响。如果隔一段时间查一下新消息,做个“批处理”,压力明显就小多了。当然,这样的代价就是可能无法及时处理有些消息,造成一定的后果。
  • 想要弄清楚流处理的发展演变,我们先要了解传统的数据处理架构。

1.3.2 传统事务处理

  • IT 互联网公司往往会用不同的应用程序来处理各种业务。比如内部使用的企业资源规划(ERP)系统、客户关系管理(CRM)系统,还有面向客户的 Web 应用程序。这些系统一般都会进行分层设计:“计算层”就是应用程序本身,用于数据计算和处理;而“存储层”往往是传统的关系型数据库,用于数据存储,如图 1-5 所示。

在这里插入图片描述

  • 我们发现,这里的应用程序在处理数据的模式上有共同之处:接收的数据是持续生成的事件,比如用户的点击行为,客户下的订单,或者操作人员发出的请求。处理事件时,应用程序需要先读取远程数据库的状态,然后按照处理逻辑得到结果,将响应返回给用户,并更新数据库状态。一般来说,一个数据库系统可以服务于多个应用程序,它们有时会访问相同的数据库或表。
  • 这就是传统的“事务处理”架构。系统所处理的连续不断的事件,其实就是一个数据流。而对于每一个事件,系统都在收到之后进行相应的处理,这也是符合流处理的原则的。所以可以说,传统的事务处理,就是最基本的流处理架构。
  • 对于各种事件请求,事务处理的方式能够保证实时响应,好处是一目了然的。但是我们知道,这样的架构对表和数据库的设计要求很高;当数据规模越来越庞大、系统越来越复杂时,可能需要对表进行重构,而且一次联表查询也会花费大量的时间,甚至不能及时得到返回结果。
  • 于是,作为程序员就只好将更多的精力放在表的设计和重构,以及 SQL 的调优上,而无法专注于业务逻辑的实现了——我们都知道,这种工作费力费时,却没法直接体现在产品上给老板看,简直就是噩梦。
  • 那有没有更合理、更高效的处理架构呢?

1.3.3 有状态的流处理

  • 不难想到,如果我们对于事件流的处理非常简单,例如收到一条请求就返回一个“收到”,那就可以省去数据库的查询和更新了。但是这样的处理是没什么实际意义的。在现实的应用中,往往需要还其他一些额外数据。我们可以把需要的额外数据保存成一个“状态”,然后针对这条数据进行处理,并且更新状态。在传统架构中,这个状态就是保存在数据库里的。这就是所谓的“有状态的流处理”。
  • 为了加快访问速度,我们可以直接将状态保存在本地内存,如图 1-6 所示。当应用收到一个新事件时,它可以从状态中读取数据,也可以更新状态。而当状态是从内存中读写的时候,这就和访问本地变量没什么区别了,实时性可以得到极大的提升。
  • 另外,数据规模增大时,我们也不需要做重构,只需要构建分布式集群,各自在本地计算就可以了,可扩展性也变得更好。
  • 因为采用的是一个分布式系统,所以还需要保护本地状态,防止在故障时数据丢失。我们可以定期地将应用状态的一致性检查点(checkpoint)存盘,写入远程的持久化存储,遇到故障时再去读取进行恢复,这样就保证了更好的容错性。

在这里插入图片描述

  • 有状态的流处理是一种通用而且灵活的设计架构,可用于许多不同的场景。具体来说,有以下几种典型应用。
  1. 事件驱动型(Event-Driven)应用

在这里插入图片描述

  • 事件驱动型应用是一类具有状态的应用,它从一个或多个事件流提取数据,并根据到来的事件触发计算、状态更新或其他外部动作。比较典型的就是以 Kafka 为代表的消息队列几乎都是事件驱动型应用。
  • 这其实跟传统事务处理本质上是一样的,区别在于基于有状态流处理的事件驱动应用,不再需要查询远程数据库,而是在本地访问它们的数据,如图 1-7 所示,这样在吞吐量和延迟方面就可以有更好的性能。
  • 另外远程持久性存储的检查点保证了应用可以从故障中恢复。检查点可以异步和增量地完成,因此对正常计算的影响非常小。
  1. 数据分析(Data Analysis)型应用
    在这里插入图片描述
  • 所谓的数据分析,就是从原始数据中提取信息和发掘规律。传统上,数据分析一般是先将数据复制到数据仓库(Data Warehouse),然后进行批量查询。如果数据有了更新,必须将最新数据添加到要分析的数据集中,然后重新运行查询或应用程序。
  • 如今,Apache Hadoop 生态系统的组件,已经是许多企业大数据架构中不可或缺的组成部分。现在的做法一般是将大量数据(如日志文件)写入 Hadoop 的分布式文件系统(HDFS)、S3 或 HBase 等批量存储数据库,以较低的成本进行大容量存储。然后可以通过 SQL-on-Hadoop类的引擎查询和处理数据,比如大家熟悉的 Hive。这种处理方式,是典型的批处理,特点是可以处理海量数据,但实时性较差,所以也叫离线分析。
  • 如果我们有了一个复杂的流处理引擎,数据分析其实也可以实时执行。流式查询或应用程序不是读取有限的数据集,而是接收实时事件流,不断生成和更新结果。结果要么写入外部数据库,要么作为内部状态进行维护。
  • Apache Flink 同时支持流式与批处理的数据分析应用,如图 1-8 所示。
  • 与批处理分析相比,流处理分析最大的优势就是低延迟,真正实现了实时。另外,流处理不需要去单独考虑新数据的导入和处理,实时更新本来就是流处理的基本模式。当前企业对流式数据处理的一个热点应用就是实时数仓,很多公司正是基于 Flink 来实现的。
  1. 数据管道(Data Pipeline)型应用

在这里插入图片描述

  • ETL 也就是数据的提取、转换、加载,是在存储系统之间转换和移动数据的常用方法。在数据分析的应用中,通常会定期触发 ETL 任务,将数据从事务数据库系统复制到分析数据库或数据仓库。
  • 所谓数据管道的作用与 ETL 类似。它们可以转换和扩展数据,也可以在存储系统之间移动数据。不过如果我们用流处理架构来搭建数据管道,这些工作就可以连续运行,而不需要再去周期性触发了。比如,数据管道可以用来监控文件系统目录中的新文件,将数据写入事件日志。连续数据管道的明显优势是减少了将数据移动到目的地的延迟,而且更加通用,可以用于更多的场景。
  • 如图 1-9 所示,展示了 ETL 与数据管道之间的区别。
  • 有状态的流处理架构上其实并不复杂,很多用户基于这种思想开发出了自己的流处理系统,这就是第一代流处理器。Apache Storm 就是其中的代表。Storm 可以说是开源流处理的先锋,最早是由 Nathan Marz 和创业公司 BackType 的一个团队开发的,后来才成为 Apache 软件基金会下属的项目。Storm 提供了低延迟的流处理,但是它也为实时性付出了代价:很难实现高吞吐,而且无法保证结果的正确性。用更专业的话说,它并不能保证“精确一次” (exactly-once);即便是它能够保证的一致性级别,开销也相当大。关于状态一致性和exactly-once,我们会在后续的章节中展开讨论。

1.3.4 Lambda 架构

  • 对于有状态的流处理,当数据越来越多时,我们必须用分布式的集群架构来获取更大的吞吐量。但是分布式架构会带来另一个问题:怎样保证数据处理的顺序是正确的呢?
  • 对于批处理来说,这并不是一个问题。因为所有数据都已收集完毕,我们可以根据需要选择、排列数据,得到想要的结果。可如果我们采用“来一个处理一个”的流处理,就可能出现“乱序”的现象:本来先发生的事件,因为分布处理的原因滞后了。怎么解决这个问题呢?
  • 以 Storm 为代表的第一代分布式开源流处理器,主要专注于具有毫秒延迟的事件处理,特点就是一个字“快”;而对于准确性和结果的一致性,是不提供内置支持的,因为结果有可能取决于到达事件的时间和顺序。另外,第一代流处理器通过检查点来保证容错性,但是故障恢复的时候,即使事件不会丢失,也有可能被重复处理——所以无法保证 exactly-once。
  • 与批处理器相比,可以说第一代流处理器牺牲了结果的准确性,用来换取更低的延迟。而批处理器恰好反过来,牺牲了实时性,换取了结果的准确。
  • 我们自然想到,如果可以让二者做个结合,不就可以同时提供快速和准确的结果了吗?正是基于这样的思想,Lambda 架构被设计出来,如图 1-10 所示。我们可以认为这是第二代流处理架构,但事实上,它只是第一代流处理器和批处理器的简单合并。

图 1-10 Lambda 架构示意图

  • Lambda 架构主体是传统批处理架构的增强。它的“批处理层”(Batch Layer)就是由传统的批处理器和存储组成,而“实时层”(Speed Layer)则由低延迟的流处理器实现。数据到达之后,两层处理双管齐下,一方面由流处理器进行实时处理,另一方面写入批处理存储空间,等待批处理器批量计算。流处理器快速计算出一个近似结果,并将它们写入“流处理表”中。而批处理器会定期处理存储中的数据,将准确的结果写入批处理表,并从快速表中删除不准确的结果。最终,应用程序会合并快速表和批处理表中的结果,并展示出来。
  • Lambda 架构现在已经不再是最先进的,但仍在许多地方使用。它的优点非常明显,就是兼具了批处理器和第一代流处理器的特点,同时保证了低延迟和结果的准确性。而它的缺点同样非常明显。首先,Lambda 架构本身就很难建立和维护;而且,它需要我们对一个应用程序,做出两套语义上等效的逻辑实现,因为批处理和流处理是两套完全独立的系统,它们的 API也完全不同。为了实现一个应用,付出了双倍的工作量,这对程序员显然不够友好。

1.3.5 新一代流处理器

  • 之前的分布式流处理架构,都有明显的缺陷,人们也一直没有放弃对流处理器的改进和完善。终于,在原有流处理器的基础上,新一代分布式开源流处理器诞生了。为了与之前的系统区分,我们一般称之为第三代流处理器,代表当然就是 Flink。
  • 第三代流处理器通过巧妙的设计,完美解决了乱序数据对结果正确性的影响。这一代系统还做到了精确一次(exactly-once)的一致性保障,是第一个具有一致性和准确结果的开源流处理器。另外,先前的流处理器仅能在高吞吐和低延迟中二选一,而新一代系统能够同时提供这两个特性。所以可以说,这一代流处理器仅凭一套系统就完成了 Lambda 架构两套系统的工作,它的出现使得 Lambda 架构黯然失色。
  • 除了低延迟、容错和结果准确性之外,新一代流处理器还在不断添加新的功能,例如高可用的设置,以及与资源管理器(如 YARN 或 Kubernetes)的紧密集成等等。

1.4 Flink 的特性总结

Flink 是第三代分布式流处理器,它的功能丰富而强大。

1.4.1 Flink 的核心特性

  • Flink 区别与传统数据处理框架的特性如下。
    1. 高吞吐,低延迟。每秒处理数百万个事件,毫秒级延迟。
    2. 结果的准确性。Flink 提供了事件时间(event-time)和处理时间(processing-time)语义。对于乱序事件流,事件时间语义仍然能提供一致且准确的结果。
    3. 精确一次(exactly-only)的状态一致性保证
    4. 可以连接到最常用的存储系统,如 Apache Kafka、Apache Cassandra、Elasticsearch、JDBC、Kinesis 和(分布式)文件系统,如 HDFS 和 S3。
    5. 高可用,支持动态拓展。本身高可用的设置,加上与 K8s,YARN 和 Mesos 的紧密集成,再加上从故障中快速恢复和动态扩展任务的能力,Flink 能做到以极少的停机时间 7×24 全天候运行。
    6. 能够更新应用程序代码并将作业(jobs)迁移到不同的 Flink 集群,而不会丢失应用程序的状态。

1.4.2 分层 API

除了上述这些特性之外,Flink 还是一个非常易于开发的框架,因为它拥有易于使用的分层 API,整体 API 分层如图 1-11 所示。
在这里插入图片描述

  • 最底层级的抽象仅仅提供了有状态流,它将处理函数(Process Function)嵌入到了DataStream API 中。底层处理函数(Process Function)与 DataStream API 相集成,可以对某些操作进行抽象,它允许用户可以使用自定义状态处理来自一个或多个数据流的事件,且状态
    具有一致性和容错保证。除此之外,用户可以注册事件时间并处理时间回调,从而使程序可以处理复杂的计算。
  • 实际上,大多数应用并不需要上述的底层抽象,而是直接针对核心 API(Core APIs) 进行编程,比如 DataStream API(用于处理有界或无界流数据)以及 DataSet API(用于处理有界数据集)。这些 API 为数据处理提供了通用的构建模块,比如由用户定义的多种形式的转换(transformations)、连接(joins)、聚合(aggregations)、窗口(windows)操作等。DataSet API为有界数据集提供了额外的支持,例如循环与迭代。这些 API 处理的数据类型以类(classes)的形式由各自的编程语言所表示。
  • Table API 是以表为中心的声明式编程,其中表在表达流数据时会动态变化。Table API 遵循关系模型:表有二维数据结构(schema)(类似于关系数据库中的表),同时 API 提供可比较的操作,例如 select、join、group-by、aggregate 等。
  • 尽管 Table API 可以通过多种类型的用户自定义函数(UDF)进行扩展,仍不如核心 API更具表达能力,但是使用起来代码量更少,更加简洁。除此之外,Table API 程序在执行之前会使用内置优化器进行优化。
  • 我们可以在表与 DataStream/DataSet 之间无缝切换,以允许程序将 Table API 与DataStream 以及 DataSet 混合使用。
  • Flink 提供的最高层级的抽象是 SQL。这一层抽象在语法与表达能力上与 Table API 类似,但是是以 SQL 查询表达式的形式表现程序。SQL 抽象与 Table API 交互密切,同时 SQL 查询可以直接在 Table API 定义的表上执行。
  • 目前 Flink SQL 和 Table API 还在开发完善的过程中,很多大厂都会二次开发符合自己需要的工具包。而 DataSet 作为批处理 API 实际应用较少,2020 年 12 月 8 日发布的新版本 1.12.0, 已经完全实现了真正的流批一体,DataSet API 已处于软性弃用(soft deprecated)的状态。用Data Stream API 写好的一套代码, 即可以处理流数据, 也可以处理批数据,只需要设置不同的执行模式。这与之前版本处理有界流的方式是不一样的,Flink 已专门对批处理数据做了优化处理。本篇中以介绍 DataStream API 为主,采用的是目前最新版本 Flink 1.13.0。

总结流处理的发展演变

官网上列举典型的应用架构

  1. 事件驱动型应用
    在这里插入图片描述
  • 传统数据处理架构:事件来了后结合数据库里面的信息来做存取然后返回响应(读写外部数据然后触发一个操作)
  • 流处理器架构:也是读取一个事件,只不过是这个事件从不同的外部系统摄取的,也就是说当前并不是一个外部服务器了,不是直接去接收网络请求的,而是在事件日志(消息队列),所以最常见的应用是flink直接连接消息队列(kafka),flink从kafka读取数据后本地的状态取代了原先的关系型数据库,这个状态进行读写操作之后就可以触发外部的,或者也可以把计算的结果再次写入到kafka或者其他的外部系统,然后再由其他的应用去读取,持久化存储是为了流处理的故障恢复。这种流处理的事件驱动型应用是与传统事务处理非常相似的
  1. 数据分析型应用

在这里插入图片描述

  • 另外也可以做数据分析,可以做olap,hadoop、spark大数据处理引擎跟hive结合起来做离线数仓,我们把这个事件先记录起来,放在某个存储介质里,然后把它读取出来,定期跑sql查询,查询的结果可以写入到数据库、hdfs或者直接就生成一个数据报告,这是比较熟悉的离线处理。

  • 有状态的流处理做数据分析,实时的事件放在kafka或者mysql里,flink通过jdbc连接外部数据库读取它的变化,然后把它作为实时事件输入给流处理器输入给flink,flink对其进行查询计算分析处理,接着就可以更新到数据库或者键值存储,也可以生成实时报告

  • 数据管道型应用
    相当于某一个管道进来,然后中间进行处理,接着一个管道出去,用flink也可以实现这样的需求

1.5 Flink vs Spark

  • 谈到大数据处理引擎,不能不提 Spark。Apache Spark 是一个通用大规模数据分析引擎。它提出的内存计算概念让大家耳目一新,得以从 Hadoop 繁重的 MapReduce 程序中解脱出来,可以说是划时代的大数据处理框架。除了计算速度快、可扩展性强,Spark 还为批处理(SparkSQL)、流处理(Spark Streaming)、机器学习(Spark MLlib)、图计算(Spark GraphX)提供了统一的分布式数据处理平台,整个生态经过多年的蓬勃发展已经非常完善。
  • 然而正在大家认为 Spark 已经如日中天、即将一统天下之际,Flink 如一颗新星异军突起,使得大数据处理的江湖再起风云。大数据处理框架,到底选择 Spark,还是 Flink 这就需要我们了解两者的主要区别,理解它们在不同领域的优势。

1.5.1 数据处理架构

  • 我们已经知道,数据处理的基本方式,可以分为批处理和流处理两种。
  • 批处理针对的是有界数据集,非常适合需要访问海量的全部数据才能完成的计算工作,一般用于离线统计。
  • 流处理主要针对的是数据流,特点是无界、实时, 对系统传输的每个数据依次执行操作,一般用于实时统计。
  • 从根本上说,Spark 和 Flink 采用了完全不同的数据处理方式。可以说,两者的世界观是截然相反的。
  • Spark 以批处理为根本,并尝试在批处理之上支持流计算;在 Spark 的世界观中,万物皆批次,离线数据是一个大批次,而实时数据则是由一个一个无限的小批次组成的。所以对于流处理框架 Spark Streaming 而言,其实并不是真正意义上的“流”处理,而是“微批次”(micro-batching)处理,如图 1-12 所示

在这里插入图片描述

  • 而 Flink 则认为,流处理才是最基本的操作,批处理也可以统一为流处理。在 Flink 的世界观中,万物皆流,实时数据是标准的、没有界限的流,而离线数据则是有界限的流。如图1-13 所示,就是所谓的无界流和有界流。
  1. 无界数据流(Unbounded Data Stream)
    所谓无界数据流,就是有头没尾,数据的生成和传递会开始但永远不会结束,如图 1-13所示。我们无法等待所有数据都到达,因为输入是无界的,永无止境,数据没有“都到达”的时候。所以对于无界数据流,必须连续处理,也就是说必须在获取数据后立即处理。在处理无界流时,为了保证结果的正确性,我们必须能够做到按照顺序处理数据。
  2. 有界数据流(Bounded Data Stream)对应的,有界数据流有明确定义的开始和结束,如图 1-13 所示,所以我们可以通过获取所有数据来处理有界流。处理有界流就不需要严格保证数据的顺序了,因为总可以对有界数据集进行排序。有界流的处理也就是批处理。

在这里插入图片描述

  • 正因为这种架构上的不同,Spark 和 Flink 在不同的应用领域上表现会有差别。一般来说,Spark 基于微批处理的方式做同步总有一个“攒批”的过程,所以会有额外开销,因此无法在流处理的低延迟上做到极致。在低延迟流处理场景,Flink 已经有明显的优势。而在海量数据的批处理领域,Spark 能够处理的吞吐量更大,加上其完善的生态和成熟易用的 API,目前同样优势比较明显。

两者底层实现:
在这里插入图片描述

1.5.2 数据模型和运行架构

  • 除了三观不合,Spark 和 Flink 在底层实现最主要的差别就在于数据模型不同。
  • Spark 底层数据模型是弹性分布式数据集(RDD),Spark Streaming 进行微批处理的底层接口 DStream,实际上处理的也是一组组小批数据 RDD 的集合。可以看出,Spark 在设计上本身就是以批量的数据集作为基准的,更加适合批处理的场景。(数据不动代码动)
  • 而 Flink 的基本数据模型是数据流(DataFlow),以及事件(Event)序列。Flink 基本上是完全按照 Google 的 DataFlow 模型实现的,所以从底层数据模型上看,Flink 是以处理流式数据作为设计目标的,更加适合流处理的场景。(代码不动数据动)
  • 数据模型不同,对应在运行处理的流程上,自然也会有不同的架构。Spark 做批计算,需要将任务对应的 DAG 划分阶段(Stage),一个完成后经过 shuffle 再进行下一阶段的计算。而Flink 是标准的流式执行模式,一个事件在一个节点处理完后可以直接发往下一个节点进行处理。

1.5.3 Spark 还是 Flink?

  • Spark 和 Flink 可以说目前是各擅胜场,批处理领域 Spark 称王,而在流处理方面 Flink 当仁不让。具体到项目应用中,不仅要看是流处理还是
    批处理,还需要在延迟、吞吐量、可靠性,以及开发容易度等多个方面进行权衡。
  • 如果在工作中需要从 Spark 和 Flink 这两个主流框架中选择一个来进行实时流处理,我们更加推荐使用 Flink,主要的原因有:
  1. Flink 的延迟是毫秒级别,而 Spark Streaming 的延迟是秒级延迟。
  2. Flink 提供了严格的精确一次性语义保证。
  3. Flink 的窗口 API 更加灵活、语义更丰富。
  4. Flink 提供事件时间语义,可以正确处理延迟数据。
  5. Flink 提供了更加灵活的对状态编程的 API。
  • 基于以上特点,使用 Flink 可以解放程序员, 加快编程效率, 把本来需要程序员花大力气手动完成的工作交给框架完成。
  • 当然,在海量数据的批处理方面,Spark 还是具有明显的优势。而且 Spark 的生态更加成熟,也会使其在应用中更为方便。相信随着 Flink 的快速发展和完善,这方面的差距会越来越小。
  • 另外,Spark 2.0 之后新增的 Structured Streaming 流处理引擎借鉴 DataFlow 进行了大量优化,同样做到了低延迟、时间正确性以及精确一次性语义保证;Spark 2.3 以后引入的连续处理(Continuous Processing)模式,更是可以在至少一次语义保证下做到 1 毫秒的延迟。而 Flink自 1.9 版本合并 Blink 以来,在 SQL 的表达和批处理的能力上同样有了长足的进步。
  • 那如果现在要学习一门框架的话,优先选 Spark 还是 Flink 呢?其实我们可以看到,不同的框架各有利弊,同时它们也在互相借鉴、取长补短、不断发展,至于未来是 Spark 还是 Flink、甚至是其他新崛起的处理引擎一统江湖,都是有可能的。作为技术人员,我们应该对不同的架构和思想都有所了解,跳出某个框架的限制,才能看到更广阔的世界。

第二章 Flink 快速上手

Flink 底层是以 Java 编写的,并为开发人员同时提供了完整的 Java 和 Scala API。在本篇中,代码示例将全部用 Java 实现;而在具体项目应用中,可以根据需要选择合适语言的 API 进行开发。

2.1 环境准备

  • 系统环境为 Windows 10
  • 需提前安装 Java 8
  • 集成开发环境(IDE)使用 IntelliJ IDEA,具体的安装流程参见 IntelliJ 官网
  • 安装 IntelliJ IDEA 之后,还需要安装一些插件——Maven 和 Git。Maven 用来管理项目依赖;通过 Git 可以轻松获取我们的示例代码,并进行本地代码的版本控制。

2.2 创建项目

  1. 创建工程
    (1) 打开 IntelliJ IDEA,创建一个 Maven 工程
    在这里插入图片描述

(2) 将这个 Maven 工程命名为 FlinkTutorial
在这里插入图片描述

  1. 添加项目依赖
    在项目的 pom 文件中,增加标签设置属性,然后增加标签引入需要的依赖。我们需要添加的依赖最重要的就是 Flink 的相关组件,包括 flink-java、flink-streaming-java,以及 flink-clients(客户端,也可以省略)。另外,为了方便查看运行日志,我们引入 slf4j 和 log4j 进行日志管理。
<properties>
        <flink.version>1.13.0</flink.version>
        <java.version>1.8</java.version>
        <scala.binary.version>2.12</scala.binary.version>
        <slf4j.version>1.7.30</slf4j.version>
    </properties>
    <dependencies>
        <!-- 引入 Flink 相关依赖-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${
   flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${
   scala.binary.version}</artifactId>
            <version>${
   flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${
   scala.binary.version}</artifactId>
            <version>${
   flink.version}</version>
        </dependency>
        <!-- 引入日志管理相关依赖-->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>${
   slf4j.version}</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>${
   slf4j.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-to-slf4j</artifactId>
            <version>2.14.0</version>
        </dependency>
    </dependencies>

这里做一点解释:
在属性中,我们定义了<scala.binary.version>,这指代的是所依赖的 Scala 版本。这有一点奇怪:Flink 底层是 Java,而且我们也只用 Java API,为什么还会依赖 Scala 呢?这是因为 Flink的架构中使用了 Akka 来实现底层的分布式通信,而 Akka 是用 Scala 开发的。这里用到的 Scala 版本为 2.12。

  1. 配置日志管理
    在目录 src/main/resources 下添加文件:log4j.properties,内容配置如下:
log4j.rootLogger=error, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

2.3 编写代码

Flink 入门的 WordCount 程序

2.3.1 批处理

对于批处理而言,输入的应该是收集好的数据集。这里我们可以将要统计的文字,写入一个文本文档,然后读取这个文件处理数据就可以了。
(1)在工程根目录下新建一个 input 文件夹,并在下面创建文本文件

words.txt

(2)在 words.txt 中输入一些文字,例如:

hello world
hello flink
hello java

(3)在 online.chenyunde.flink 包下新建 Java 类 BatchWordCount,在静态 main 方法中编写测试代码。我们进行单词频次统计的基本思路是:先逐行读入文件数据,然后将每一行文字拆分成单词;接着按照单词分组,统计每组数据的个数,就是对应单词的频次。
具体代码实现如下:

package online.chenyunde.flink;

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.operators.UnsortedGrouping;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;

public class BatchWordCount {
   
    public static void main(String[] args) throws Exception {
   
        // 1.创建执行环境
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        // 2.从文件读取数据
        DataSource<String> lineDataSource = env.readTextFile("input/words.txt");

        // 3.将每行数据进行分词,转换成二元组类型
        FlatMapOperator<String, Tuple2<String, Long>> wordAndOneTuple = lineDataSource.flatMap((String line, Collector<Tuple2<String, Long>> out) -> {
   
                    // 将一行文本进行分词
                    String[] words = line.split(" ");
                    // 将每个单词转换成二元组输出
                    for (String word : words) {
   
                        // 这里只能用collect完成需求,return不能将每一行打散
                        out.collect(Tuple2.of(word, 1L));
                    }
                })
                // 当Lambda表达式使用Java泛型的时候,由于泛型擦除的存在而需要显示的声明类型信息
                .returns(Types.TUPLE(Types.STRING, Types.LONG));

        // 4.按照word进行分组
        UnsortedGrouping<Tuple2<String, Long>> wordAndOneGroup = wordAndOneTuple.groupBy(0);

        // 5.分组内聚合统计
        AggregateOperator<Tuple2<String, Long>> sum = wordAndOneGroup.sum(1);

        // 6.打印结果
        sum.print();
    }
}

代码说明和注意事项:

  1. Flink 在执行应用程序前应该获取执行环境对象,也就是运行时上下文环境。
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
  1. Flink 同时提供了 Java 和 Scala 两种语言的 API,有些类在两套 API 中名称是一样的。所以在引入包时,如果有 Java 和 Scala 两种选择,要注意选用 Java 的包。
  2. 直接调用执行环境的 readTextFile 方法,可以从文件中读取数据。
  3. 我们的目标是将每个单词对应的个数统计出来,所以调用 flatmap 方法可以对一行文字进行分词转换。将文件中每一行文字拆分成单词后,要转换成(word,count)形式的二元组,初始 count 都为 1。returns 方法指定的返回数据类型 Tuple2,就是 Flink 自带的二元组数据类型。
  4. 在分组时调用了 groupBy 方法,它不能使用分组选择器,只能采用位置索引或属性名称进行分组。
// 使用索引定位
dataStream.groupBy(0)
// 使用类属性名称
dataStream.groupBy("id") 
  1. 在分组之后调用 sum 方法进行聚合,同样只能指定聚合字段的位置索引或属性名称。

输出结果:
在这里插入图片描述

  • 可以看到,我们将文档中的所有单词的频次,全部统计出来,以二元组的形式在控制台打印输出了。
  • 需要注意的是,这种代码的实现方式,是基于 DataSet API 的,也就是我们对数据的处理转换,是看作数据集来进行操作的。事实上 Flink 本身是流批统一的处理架构,批量的数据集本质上也是流,没有必要用两套不同的 API 来实现。所以从 Flink 1.12 开始,官方推荐的做法是直接使用 DataStream API,在提交任务时通过将执行模式设为 BATCH 来进行批处理:

$ bin/flink run -Dexecution.runtime-mode=BATCH BatchWordCount.jar

  • 这样,DataSet API 就已经处于“软弃用”(soft deprecated)的状态,在实际应用中我们只要维护一套 DataStream API 就可以了。这里只是为了方便大家理解,我们依然用 DataSet API做了批处理的实现。

在这里插入图片描述

DataSource继承自Operator,Operator继承自DataSet,所有的转换操作都是基于DataSet(其他转换操作类也是最终继承自DataSet,我们把调用DataSet这套API叫做DataSet API)

2.3.2 流处理

  • 我们已经知道,用 DataSet API 可以很容易地实现批处理;与之对应,流处理当然可以用DataStream API 来实现。对于 Flink 而言,流才是整个处理逻辑的底层核心,所以流批统一之后的 DataStream API 更加强大,可以直接处理批处理和流处理的所有场景。
  • DataStream API 作为“数据流”的处理接口,又怎样处理批数据呢?
  • 回忆一下上一章中我们讲到的 Flink 世界观。在 Flink 的视角里,一切数据都可以认为是流,流数据是无界流,而批数据则是有界流。所以批处理,其实就可以看作有界流的处理。
  • 对于流而言,我们会在获取输入数据后立即处理,这个过程是连续不断的。当然,有时我们的输入数据可能会有尽头,这看起来似乎就成了一个有界流;但是它跟批处理是截然不同的——在输入结束之前,我们依然会认为数据是无穷无尽的,处理的模式也仍旧是连续逐个处理。
  • 下面我们就针对不同类型的输入数据源,用具体的代码来实现流处理。
  1. 读取文件
    我们同样试图读取文档 words.txt 中的数据,并统计每个单词出现的频次。这是一个“有界流”的处理,整体思路与之前的批处理非常类似,代码模式也基本一致。
    (1) 在 online.chenyunde.flink 包下新建 Java 类BoundedStreamWordCount,在静态 main 方法中编写测试代码。具体代码实现如下:
package online.chenyunde.flink;

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class BoundedStreamWordCount {
   
    public static void main(String[] args) throws Exception {
   
        // 1.创建流式执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 2.读取文件
        DataStreamSource<String> lineDataStreamSource = env.readTextFile("input/words.txt");

        // 3.转换数据格式
        SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOneTuple = lineDataStreamSource.flatMap((String line, Collector<Tuple2<String, Long>> out) -> {
   
            String[] words = line.split(" ");
            for (String word : words) {
   
                out.collect(Tuple2.of(word, 1L));
            }
        }).returns(Types.TUPLE(Types.STRING, Types.LONG));

        // 4.分组
        KeyedStream<Tuple2<String, Long>, String> wordAndOneKeyedStream = wordAndOneTuple.keyBy(data -> data.f0);

        // 5.求和
        SingleOutputStreamOperator<Tuple2<String, Long>> sum = wordAndOneKeyedStream.sum(1);

        // 6.打印
        sum.print();

        // 7.执行
        env.execute();
    }
}

主要观察与批处理程序 BatchWordCount 的不同:

  • 创建执行环境的不同,流处理程序使用的是StreamExecutionEnvironment。
  • 每一步处理转换之后,得到的数据对象类型不同。
  • 分组操作调用的是 keyBy 方法,可以传入一个匿名函数作为键选择器(KeySelector),指定当前分组的 key 是什么。
  • 代码末尾需要调用 env 的 execute 方法,开始执行任务。

输出结果:
在这里插入图片描述

  • 我们可以看到,这与批处理的结果是完全不同的。批处理针对每个单词,只会输出一个最终的统计个数;而在流处理的打印结果中,“hello”这个单词每出现一次,都会有一个频次统计数据输出。这就是流处理的特点,数据逐个处理,每来一条数据就会处理输出一次。我们通过打印结果,可以清晰地看到单词“hello”数量增长的过程。
  • 看到这里大家可能又会有新的疑惑:我们读取文件,第一行应该是“hello flink”,怎么这里输出的第一个单词是“world”呢?每个输出的结果二元组,前面都有一个数字,这又是什么呢?
  • 我们可以先做个简单的解释。Flink 是一个分布式处理引擎,所以我们的程序应该也是分布式运行的。在开发环境里,会通过多线程来模拟 Flink 集群运行。所以这里结果前的数字,其实就指示了本地执行的不同线程,对应着 Flink 运行时不同的并行资源。这样第一个乱序的问题也就解决了:既然是并行执行,不同线程的输出结果,自然也就无法保持输入的顺序了。
  • 另外需要说明,这里显示的编号为 1~4,是由于运行电脑的 CPU 是 4 核,所以默认模拟的并行线程有 4 个。这段代码不同的运行环境,得到的结果会是不同的。关于 Flink 程序并行执行的数量,可以通过设定“并行度”(Parallelism)来进行配置,我们会在后续章节详细讲解这些内容。
  1. 读取文本流
  • 在实际的生产环境中,真正的数据流其实是无界的,有开始却没有结束,这就要求我们需要保持一个监听事件的状态,持续地处理捕获的数据。
  • 为了模拟这种场景,我们就不再通过读取文件来获取数据了,而是监听数据发送端主机的指定端口,统计发送来的文本数据中出现过的单词的个数。具体实现上,我们只要对BoundedStreamWordCount 代码中读取数据的步骤稍做修改,就可以实现对真正无界流的处理。
    (1)新建一个 Java 类 StreamWordCount,将BoundedStreamWordCount 代码中读取文件数据的 readTextFile 方法,替换成读取 socket 文本流的方法 socketTextStream。具体代码实现如下:
package online.chenyunde.flink;

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class StreamWordCount {
   
    public static void main(String[] args) throws Exception {
   
        // 1.创建流式执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 2.读取文本流
        DataStreamSource<String> lineDataStream = env.socketTextStream("hadoop102", 7777);

        // 3.转换数据格式
        SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOneTuple = lineDataStream.flatMap((String line, Collector<Tuple2<String, Long>> out) -> {
   
            String[] words = line.split(" ");
            for (String word : words) {
   
                out.collect(Tuple2.of(word, 1L));
            }
        }).returns(Types.TUPLE(Types.STRING, Types.LONG));

        // 4.分组
        KeyedStream<Tuple2<String, Long>, String> wordAndOneKeyedStream = wordAndOneTuple.keyBy(data -> data.f0);

        // 5.求和
        SingleOutputStreamOperator<Tuple2<String, Long>> sum = wordAndOneKeyedStream.sum(1);

        // 6.打印
        sum.print();

        // 7.执行
        env.execute();
    }
}

代码说明和注意事项:

  • socket 文本流的读取需要配置两个参数:发送端主机名和端口号。这里代码中指定了主机“hadoop102”的 7777 端口作为发送数据的 socket 端口,读者可以根据测试环境自行配置。
  • 在实际项目应用中,主机名和端口号这类信息往往可以通过配置文件,或者传入程序运行参数的方式来指定。
  • socket文本流数据的发送,可以通过Linux系统自带的netcat工具进行模拟。
    (2)在 Linux 环境的主机 hadoop102 上,执行下列命令,发送数据进行测试:

[atguigu@hadoop102 ~]$ nc -lk 7777

(3)启动 StreamWordCount 程序
我们会发现程序启动之后没有任何输出、也不会退出。这是正常的——因为 Flink 的流处理是事件驱动的,当前程序会一直处于监听状态,只有接收到数据才会执行任务、输出统计结果。
(4)从 hadoop102 发送数据:
在这里插入图片描述

可以看到控制台输出结果如下:
在这里插入图片描述

我们会发现,输出的结果与之前读取文件的流处理非常相似。而且可以非常明显地看到,每输入一条数据,就有一次对应的输出。

2.4 本章总结

本章主要实现一个 Flink 开发的入门程序——词频统计 WordCount。通过批处理和流处理两种不同模式的实现,可以对 Flink 的 API 风格和编程方式有所熟悉,并且更加深刻地理解批处理和流处理的不同。另外,通过读取有界数据(文件)和无界数据(socket 文本流)进行流处理的比较,我们也可以更加直观地体会到 Flink 流处理的方式和特点。

第 3 章 Flink 部署

  • 在上一章中,我们在集成开发环境里编写 Flink 代码,然后运行测试。我们应该会发现:对于读取文本流的流处理程序,运行之后其实并不会去直接执行代码中定义好的操作— —因为这时还没有数据;只有在输入数据之后,才会触发分词转换、分组统计的一系列处理操作。可明明我们的代码顺序执行,会调用到 flatMap、keyBy 和 sum 等一系列处理方法,这是怎么回事呢?
  • 这涉及 Flink 作业提交运行的原理。我们编写的代码,对应着在 Flink 集群上执行的一个作业;所以我们在本地执行代码,其实是先模拟启动一个 Flink 集群,然后将作业提交到集群上,创建好要执行的任务等待数据输入。
  • 这里需要提到 Flink 中的几个关键组件:客户端(Client)、作业管理器(JobManager)和任务管理器(TaskManager)。我们的代码,实际上是由客户端获取并做转换,之后提交给JobManger 的。所以JobManager 就是 Flink 集群里的“管事人”,对作业进行中央调度管理;而它获取到要执行的作业后,会进一步处理转换,然后分发任务给众多的TaskManager。这里的 TaskManager,就是真正“干活的人”,数据的处理操作都是它们来做的,如图 3-1 所示。

在这里插入图片描述

  • 在实际项目应用中,我们当然不能使用开发环境的模拟集群,而是需要将 Flink 部署在生产集群环境中,然后在将作业提交到集群上运行。所以本章我们就来介绍 Flink 的部署及作业提交的流程。
  • Flink 是一个非常灵活的处理框架,它支持多种不同的部署场景,还可以和不同的资源管理平台方便地集成。所以接下来我们会先做一个简单的介绍,让大家有一个初步的认识,之后再展开讲述不同情形下的 Flink 部署。

3.1 快速启动一个 Flink 集群

3.1.1 环境配置

Flink 是一个分布式的流处理框架,所以实际应用一般都需要搭建集群环境。我们在进行Flink 安装部署的学习时,需要准备 3 台 Linux 机器。具体要求如下:

  1. 系统环境为 CentOS 7.5 版本。
  2. 安装 Java 8。
  3. 安装 Hadoop 集群,Hadoop 建议选择 Hadoop 2.7.5 以上版本。
  4. 配置集群节点服务器间时间同步以及免密登录,关闭防火墙。

3.1.2 本地启动

最简单的启动方式,其实是不搭建集群,直接本地启动。本地部署非常简单,直接解压安装包就可以使用,不用进行任何配置;一般用来做一些简单的测试。具体安装步骤如下:

  1. 下载安装包
    进入 Flink 官网,下载 1.13.0 版本安装包 flink-1.13.0-bin-scala_2.12.tgz,注意此处选用对应 scala 版本为 scala 2.12 的安装包。
    在这里插入图片描述

  2. 解压
    在 hadoop102 节点服务器上创建安装目录/opt/module,将 flink 安装包放在该目录下,并执行解压命令,解压至当前目录。

[chenyunde@hadoop102 software]$ tar -zxvf flink-1.13.0-bin-scala_2.12.tgz -C /opt/module/

  1. 启动
    进入解压后的目录,执行启动命令,并查看进程。

$ cd flink-1.13.0/
$ bin/start-cluster.sh
$ jps

在这里插入图片描述

  1. 访问 Web UI
    启动成功后,访问 http://hadoop102:8081,可以对 flink 集群和任务进行监控管理,如图
    在这里插入图片描述

  2. 关闭集群
    如果想要让 Flink 集群停止运行,可以执行以下命令:

$ bin/stop-cluster.sh

在这里插入图片描述

3.1.3 集群启动

  • 可以看到,Flink 本地启动非常简单,直接执行 start-cluster.sh 就可以了。如果我们想要扩展成集群,其实启动命令是不变的,主要是需要指定节点之间的主从关系。
  • Flink 是典型的 Master-Slave 架构的分布式数据处理框架,其中 Master 角色对应着JobManager,Slave 角色则对应 TaskManager。我们对三台节点服务器的角色分配如表 3-1 所示。

在这里插入图片描述

具体安装部署步骤如下:

  1. 下载并解压安装包
    具体操作与上节相同。
  2. 修改集群配置
    (1)进入 conf 目录下,修改 flink-conf.yaml 文件,修改jobmanager.rpc.address 参数为hadoop102,如下所示:

$ cd conf/
$ vim flink-conf.yaml

# JobManager 节点地址 
jobmanager.rpc.address: hadoop102

这就指定了 hadoop102 节点服务器为 JobManager 节点。
(2)修改 workers 文件,将另外两台节点服务器添加为本 Flink 集群的 TaskManager 节点,具体修改如下:

$ vim workers

hadoop103
hadoop104

这样就指定了 hadoop103 和 hadoop104 为 TaskManager 节点。
(3)另外,在 flink-conf.yaml 文件中还可以对集群中的 JobManager 和 TaskManager 组件
进行优化配置,主要配置项如下:

  • jobmanager.memory.process.size:对 JobManager 进程可使用到的全部内存进行配置,包括 JVM 元空间和其他开销,默认为 1600M,可以根据集群规模进行适当调整。
  • taskmanager.memory.process.size:对 TaskManager 进程可使用到的全部内存进行配置,包括 JVM 元空间和其他开销,默认为 1600M,可以根据集群规模进行适当调整。
  • taskmanager.numberOfTaskSlots:对每个 TaskManager 能够分配的 Slot 数量进行配置,默认为 1,可根据 TaskManager 所在的机器能够提供给 Flink 的 CPU 数量决定。所谓Slot 就是 TaskManager 中具体运行一个任务所分配的计算资源。
  • parallelism.default:Flink 任务执行的默认并行度,优先级低于代码中进行的并行度配置和任务提交时使用参数指定的并行度数量。
  • 关于 Slot 和并行度的概念,我们会在下一章做详细讲解。
  1. 分发安装目录
    配置修改完毕后,将 Flink 安装目录发给另外两个节点服务器。

$ scp -r ./flink-1.13.0 chenyunde@hadoop103:/opt/module
$ scp -r ./flink-1.13.0 chenyunde@hadoop104:/opt/module

我这边用的是写好的脚本

$ xsync flink-1.13.0

  1. 启动集群
    (1)在 hadoop102 节点服务器上执行 start-cluster.sh 启动 Flink 集群:

$ bin/start-cluster.sh

Starting cluster.
Starting standalonesession daemon on host hadoop102.
Starting taskexecutor daemon on host hadoop103.
Starting taskexecutor daemon on host hadoop104.

(2)查看进程情况:

在这里插入图片描述

  1. 访问 Web UI
    启动成功后,同样可以访问 http://hadoop102:8081 对 flink 集群和任务进行监控管理,如图

在这里插入图片描述

这里可以明显看到,当前集群的 TaskManager 数量为 2;由于默认每个 TaskManager 的 Slot数量为 1,所以总 Slot 数和可用 Slot 数都为 2。

3.1.4 向集群提交作业

  • 在上一章中,我们已经编写了词频统计的批处理和流处理的示例程序,并在开发环境的模拟集群上做了运行测试。现在既然已经有了真正的集群环境,那接下来我们就要把作业提交上去执行了。
  • 本节我们将以流处理的程序为例,演示如何将任务提交到集群中进行执行。具体步骤如下。
  1. 程序打包
    (1)为方便自定义结构和定制依赖,我们可以引入插件 maven-assembly-plugin 进行打包。在 FlinkTutorial 项目的 pom.xml 文件中添加打包插件的配置,具体如下:
<build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

(2)插件配置完毕后,可以使用 IDEA 的 Maven 工具执行 package 命令,出现如下提示即表示打包成功。

在这里插入图片描述

打 包 完 成 后 , 在 target 目 录 下 即 可 找 到 所 需 JAR 包 , JAR 包 会 有 两 个 ,FlinkTutorial-1.0-SNAPSHOT.jar 和 FlinkTutorial-1.0-SNAPSHOT-jar-with-dependencies.jar,因为集群中已经具备任务运行所需的所有依赖,所以建议使用 FlinkTutorial-1.0-SNAPSHOT.jar。

  1. 在 Web UI 上提交作业
    (1)任务打包完成后,我们打开 Flink 的 WEB UI 页面,在右侧导航栏点击“Submit New Job”,然后点击按钮“+ Add New”,选择要上传运行的 JAR 包,如图

在这里插入图片描述

上传完成后,如图
在这里插入图片描述

(2)点击该 JAR 包,出现任务配置页面,进行相应配置。
主要配置程序入口主类的全类名,任务运行的并行度,任务运行所需的配置参数和保存点路径等,如图所示,配置完成后,即可点击按钮“Submit”,将任务提交到集群运行
在这里插入图片描述

(3)任务提交成功之后,可点击左侧导航栏的“Running Jobs”查看程序运行列表情况,如图(记得hadoop102那开启socket端口:nc -lk 7777,否则会报错)()
(4)点击该任务,可以查看任务运行的具体情况,也可以通过点击“Cancel Job”结束任务运行,如图
在这里插入图片描述

hadoop102发送数据

hello flink
hello spark

在Task Managers 的Stuout中能看到结果
在这里插入图片描述

  1. 命令行提交作业
    除了通过 WEB UI 界面提交任务之外,也可以直接通过命令行来提交任务。这里为方便起见,我们可以先把 jar 包直接上传到目录 flink-1.13.0 下

(1)首先需要启动集群。

$ bin/start-cluster.sh

(2)在 hadoop102 中执行以下命令启动 netcat。

$ nc -lk 7777

(3)进入到 Flink 的安装路径下,在命令行使用 flink run 命令提交作业。

$ bin/flink run -m hadoop102:8081 -c online.chenyunde.flink.StreamWordCount -p 2 ./FlinkTutorial-1.0-SNAPSHOT.jar

这里的参数 –m 指定了提交到的 JobManager,-c 指定了入口类 -p指定并行度。
(4)在浏览器中打开 Web UI,http://hadoop102:8081 查看应用执行情况,如图

在这里插入图片描述

用 netcat 输入数据,可以在 TaskManager 的标准输出(Stdout)看到对应的统计结果。
(5)在 log 日志中,也可以查看执行结果,需要找到执行该数据任务的 TaskManager 节点查看日志。

$ cat flink-chenyunde-taskexecutor-0-hadoop102.out

SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in 
[jar:file:/opt/module/flink-1.13.0/lib/log4j-slf4j-impl-2.12.1.jar!/org/slf4j
/impl/StaticLoggerBinder.class]
SLF4J: Found binding in 
[jar:file:/opt/module/hadoop-3.1.3/share/hadoop/common/lib/slf4j-log4j12-1.7.
25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
(hello,1)
(hello,2)
(flink,1)
(hello,3)
(scala,1)

3.2 部署模式

在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。Flink 为各种场景提供了不同的部署模式,主要有以下三种:

  • 会话模式(Session Mode)
  • 单作业模式(Per-Job Mode)
  • 应用模式(Application Mode)

它们的区别主要在于:集群的生命周期以及资源的分配方式;以及应用的 main 方法到底在哪里执行——客户端(Client)还是 JobManager。接下来我们就做一个展开说明。

3.2.1 会话模式(Session Mode)

会话模式其实最符合常规思维。我们需要先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业,如图 3-10 所示。集群启动时所有资源就都已经确定,所以所有提交的作业会竞争集群中的资源。
在这里插入图片描述

  • 这样的好处很明显,我们只需要一个集群,就像一个大箱子,所有的作业提交之后都塞进去;集群的生命周期是超越于作业之上的,铁打的营盘流水的兵,作业结束了就释放资源,集群依然正常运行。当然缺点也是显而易见的:因为资源是共享的,所以资源不够了,提交新的作业就会失败。另外,同一个 TaskManager 上可能运行了很多作业,如果其中一个发生故障导致 TaskManager 宕机,那么所有作业都会受到影响。
  • 我们在 3.1 节中先启动集群再提交作业,这种方式其实就是会话模式。
  • 会话模式比较适合于单个规模小、执行时间短的大量作业

3.2.2 单作业模式(Per-Job Mode)

  • 会话模式因为资源共享会导致很多问题,所以为了更好地隔离资源,我们可以考虑为每个提交的作业启动一个集群,这就是所谓的单作业(Per-Job)模式,如图

在这里插入图片描述

  • 单作业模式也很好理解,就是严格的一对一,集群只为这个作业而生。同样由客户端运行应用程序,然后启动集群,作业被提交给 JobManager,进而分发给 TaskManager 执行。作业完成后,集群就会关闭,所有资源也会释放。这样一来,每个作业都有它自己的JobManager管理,占用独享的资源,即使发生故障,它的 TaskManager 宕机也不会影响其他作业。
  • 这些特性使得单作业模式在生产环境运行更加稳定,所以是实际应用的首选模式。
  • 需要注意的是,Flink 本身无法直接这样运行,所以单作业模式一般需要借助一些资源管理框架来启动集群,比如 YARN、Kubernetes。

3.2.3 应用模式(Application Mode)

  • 前面提到的两种模式下,应用代码都是在客户端上执行,然后由客户端提交给 JobManager的。但是这种方式客户端需要占用大量网络带宽,去下载依赖和把二进制数据发送给JobManager;加上很多情况下我们提交作业用的是同一个客户端,就会加重客户端所在节点的资源消耗。
  • 所以解决办法就是,我们不要客户端了,直接把应用提交到 JobManger 上运行。而这也就代表着,我们需要为每一个提交的应用单独启动一个 JobManager,也就是创建一个集群。这个 JobManager 只为执行这一个应用而存在,执行结束之后 JobManager 也就关闭了,这就是所谓的应用模式,如图

在这里插入图片描述

  • 应用模式与单作业模式,都是提交作业之后才创建集群;单作业模式是通过客户端来提交的,客户端解析出的每一个作业对应一个集群;而应用模式下,是直接由 JobManager 执行应用程序的,并且即使应用包含了多个作业,也只创建一个集群。
  • 总结一下,在会话模式下,集群的生命周期独立于集群上运行的任何作业的生命周期,并且提交的所有作业共享资源。而单作业模式为每个提交的作业创建一个集群,带来了更好的资源隔离,这时集群的生命周期与作业的生命周期绑定。最后,应用模式为每个应用程序创建一个会话集群,在 JobManager 上直接调用应用程序的 main()方法。
  • 我们所讲到的部署模式,相对是比较抽象的概念。实际应用时,一般需要和资源管理平台结合起来,选择特定的模式来分配资源、部署应用。接下来,我们就针对不同的资源提供者(Resource Provider)的场景,具体介绍 Flink 的部署方式。

3.3 独立模式(Standalone)

  • 独立模式(Standalone)是部署 Flink 最基本也是最简单的方式:所需要的所有 Flink 组件,都只是操作系统上运行的一个 JVM 进程。
  • 独立模式是独立运行的,不依赖任何外部的资源管理平台;当然独立也是有代价的:如果资源不足,或者出现故障,没有自动扩展或重分配资源的保证,必须手动处理。所以独立模式一般只用在开发测试或作业非常少的场景下。
  • 另外,我们也可以将独立模式的集群放在容器中运行。Flink 提供了独立模式的容器化部署方式,可以在 Docker 或者 Kubernetes 上进行部署。

3.3.1 会话模式部署

  • 可以发现,独立模式的特点是不依赖外部资源管理平台,而会话模式的特点是先启动集群、后提交作业。所以,我们在第 3.1 节用的就是独立模式(Standalone)的会话模式部署。

3.3.2 单作业模式部署

  • 在 3.2.2 节中我们提到,Flink 本身无法直接以单作业方式启动集群,一般需要借助一些资源管理平台。所以 Flink 的独立(Standalone)集群并不支持单作业模式部署。

3.3.3 应用模式部署

  • 应用模式下不会提前创建集群,所以不能调用 start-cluster.sh 脚本。我们可以使用同样在bin 目录下的 standalone-job.sh 来创建一个 JobManager。
    具体步骤如下:
    (1)进入到 Flink 的安装路径下,将应用程序的 jar 包放到 lib/目录下。

$ cp ./FlinkTutorial-1.0-SNAPSHOT.jar lib/

(2)执行以下命令,启动 JobManager。

$ ./bin/standalone-job.sh start --job-classname online.chenyunde.flink.StreamWordCount

这里我们直接指定作业入口类,脚本会到 lib 目录扫描所有的 jar 包。
(3)同样是使用 bin 目录下的脚本,启动 TaskManager。

$ ./bin/taskmanager.sh start

(4)如果希望停掉集群,同样可以使用脚本,命令如下。

$ ./bin/standalone-job.sh stop
$ ./bin/taskmanager.sh stop

3.3.4 高可用(High Availability )

  • 分布式除了提供高吞吐,另一大好处就是有更好的容错性。对于 Flink 而言,因为一般会有多个 TaskManager,即使运行时出现故障,也不需要将全部节点重启,只要尝试重启故障节点就可以了。但是我们发现,针对一个作业而言,管理它的 JobManager 却只有一个,这同样有可能出现单点故障。为了实现更好的可用性,我们需要 JobManager 做一些主备冗余,这就是所谓的高可用(High Availability,简称 HA)。
  • 我们可以通过配置,让集群在任何时候都有一个主 JobManager 和多个备用 JobManagers,如图 3-13 所示,这样主节点故障时就由备用节点来接管集群,接管后作业就可以继续正常运行。主备 JobManager 实例之间没有明显的区别,每个 JobManager 都可以充当主节点或者备
    节点。
    在这里插入图片描述

具体配置如下:
(1)进入 Flink 的安装路径下的 conf 目录下,修改配置文件: flink-conf.yaml,增加如下配置。

high-availability: zookeeper
high-availability.storageDir: hdfs://hadoop102:9820/flink/standalone/ha
high-availability.zookeeper.quorum: 
hadoop102:2181,hadoop103:2181,hadoop104:2181
high-availability.zookeeper.path.root: /flink-standalone
high-availability.cluster-id: /cluster_chenyunde

(2)修改配置文件: masters,配置备用 JobManager 列表。

hadoop102:8081
hadoop103:8081

(3)分发修改后的配置文件到其他节点服务器。
(4)在/etc/profile.d/my_env.sh 中配置环境变量

export HADOOP_CLASSPATH=hadoop classpath

在配置过程中,需要注意以下几点:
⚫ 需要提前保证 HAOOP_HOME 环境变量配置成功
⚫ 分发到其他节点
具体部署方法如下:
(1)首先启动 HDFS 集群和 Zookeeper 集群。
(2)执行以下命令,启动 standalone HA 集群。

$ bin/start-cluster.sh

(3)可以分别访问两个备用 JobManager 的 Web UI 页面。
http://hadoop102:8081
http://hadoop103:8081
(4)在 zkCli.sh 中查看谁是 leader。

[zk: localhost:2181(CONNECTED) 1] get
/flink-standalone/cluster_atguigu/leader/rest_server_lock

杀死 hadoop102 上的 Jobmanager, 再看 leader。

[zk: localhost:2181(CONNECTED) 7] get
/flink-standalone/cluster_atguigu/leader/rest_server_lock

注意: 不管是不是 leader,从 WEB UI 上是看不到区别的, 都可以提交应用。

3.4 YARN 模式

  • 独立(Standalone)模式由 Flink 自身提供资源,无需其他框架,这种方式降低了和其他第三方资源框架的耦合性,独立性非常强。但我们知道,Flink 是大数据计算框架,不是资源调度框架,这并不是它的强项;所以还是应该让专业的框架做专业的事,和其他资源调度框架集成更靠谱。而在目前大数据生态中,国内应用最为广泛的资源管理平台就是 YARN 了。所以接下来我们就将学习,在强大的 YARN 平台上 Flink 是如何集成部署的。
  • 整体来说,YARN 上部署的过程是:客户端把 Flink 应用提交给 Yarn 的 ResourceManager, Yarn 的 ResourceManager 会向 Yarn 的 NodeManager 申请容器。在这些容器上,Flink 会部署JobManager 和 TaskManager 的实例,从而启动集群。Flink 会根据运行在 JobManger 上的作业所需要的 Slot 数量动态分配 TaskManager 资源。

3.4.1 相关准备和配置

  • 在 Flink1.8.0 之前的版本,想要以 YARN 模式部署 Flink 任务时,需要 Flink 是有 Hadoop支持的。从 Flink 1.8 版本开始,不再提供基于 Hadoop 编译的安装包,若需要 Hadoop 的环境支持,需要自行在官网下载Hadoop 相关版本的组件 flink-shaded-hadoop-2-uber-2.7.5-10.0.jar,并将该组件上传至 Flink 的 lib 目录下。在 Flink 1.11.0 版本之后,增加了很多重要新特性,其中就包括增加了对Hadoop3.0.0以及更高版本Hadoop的支持,不再提供“flink-shaded-hadoop-*”jar 包,而是通过配置环境变量完成与 YARN 集群的对接。
  • 在将 Flink 任务部署至 YARN 集群之前,需要确认集群是否安装有 Hadoop,保证 Hadoop版本至少在 2.2 以上,并且集群中安装有 HDFS 服务。
    具体配置步骤如下:
    (1)按照 3.1 节所述,下载并解压安装包,并将解压后的安装包重命名为 flink-1.13.0-yarn,本节的相关操作都将默认在此安装路径下执行。
    (2)配置环境变量,增加环境变量配置如下:

$ sudo vim /etc/profile.d/my_env.sh

HADOOP_HOME=/opt/module/hadoop-2.7.5
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export HADOOP_CONF_DIR=${
   HADOOP_HOME}/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`

这里必须保证设置了环境变量 HADOOP_CLASSPATH。
(3)启动 Hadoop 集群,包括 HDFS 和 YARN。

[chenyunde@hadoop102 ~]$ start-dfs.sh
[chenyunde@hadoop103 ~]$ start-yarn.sh

分别在 3 台节点服务器查看进程启动情况。

[chenyunde@hadoop102 ~]$ jps

5190 Jps
5062 NodeManager
4408 NameNode
4589 DataNode

[chenyunde@hadoop103 ~]$ jps

5425 Jps
4680 ResourceManager
5241 NodeManager
4447 DataNode

[chenyunde@hadoop104 ~]$ jps

4731 NodeManager
4333 DataNode
4861 Jps
4478 SecondaryNameNode

(4)进入 conf 目录,修改 flink-conf.yaml 文件,修改以下配置,这些配置项的含义在进行 Standalone 模式配置的时候进行过讲解,若在提交命令中不特定指明,这些配置将作为默认配置。

$ cd /opt/module/flink-1.13.0-yarn/conf/

$ vim flink-conf.yaml

jobmanager.memory.process.size: 1600m
taskmanager.memory.process.size: 1728m
taskmanager.numberOfTaskSlots: 8
parallelism.default: 1

3.4.2 会话模式部署

YARN 的会话模式与独立集群略有不同,需要首先申请一个 YARN 会话(YARN session)来启动 Flink 集群。具体步骤如下:

  1. 启动集群
    (1)启动 hadoop 集群(HDFS, YARN)。
    (2)执行脚本命令向 YARN 集群申请资源,开启一个 YARN 会话,启动 Flink 集群。

$ bin/yarn-session.sh -nm test

可用参数解读:

  • -d:分离模式,如果你不想让 Flink YARN 客户端一直前台运行,可以使用这个参数,即使关掉当前对话窗口,YARN session 也可以后台运行。
  • -jm(–jobManagerMemory):配置 JobManager 所需内存,默认单位 MB。
  • -nm(–name):配置在 YARN UI 界面上显示的任务名。
  • -qu(–queue):指定 YARN 队列名。
  • -tm(–taskManager):配置每个 TaskManager 所使用内存。

注意:Flink1.11.0 版本不再使用-n 参数和-s 参数分别指定 TaskManager 数量和 slot 数量,YARN 会按照需求动态分配 TaskManager 和 slot。所以从这个意义上讲,YARN 的会话模式也不会把集群资源固定,同样是动态分配的。

YARN Session 启动之后会给出一个 web UI 地址以及一个 YARN application ID,如下所示,用户可以通过 web UI 或者命令行两种方式提交作业。

在这里插入图片描述

  1. 提交作业
    (1)通过 Web UI 提交作业
    这种方式比较简单,与上文所述 Standalone 部署模式基本相同。
    (2)通过命令行提交作业
    ① 将 Standalone 模式讲解中打包好的任务运行 JAR 包上传至集群
    ② 执行以下命令将该任务提交到已经开启的 Yarn-Session 中运行。

$ bin/flink run -c online.chenyunde.flink.StreamWordCount FlinkTutorial-1.0-SNAPSHOT.jar

客户端可以自行确定 JobManager 的地址,也可以通过-m 或者-jobmanager 参数指定JobManager 的地址,JobManager 的地址在 YARN Session 的启动页面中可以找到。
③ 任务提交成功后,可在 YARN 的 Web UI 界面查看运行情况。

在这里插入图片描述

从上图中可以看到我们创建的 Yarn-Session 实际上是一个 Yarn 的
Application,并且有唯一的 Application ID。

④也可以通过 Flink 的 Web UI 页面查看提交任务的运行情况
在这里插入图片描述

3.4.3 单作业模式部署

在 YARN 环境中,由于有了外部平台做资源调度,所以我们也可以直接向 YARN 提交一个单独的作业,从而启动一个 Flink 集群。
(1)执行命令提交作业。

$ bin/flink run -d -t yarn-per-job -c online.chenyunde.flink.StreamWordCount FlinkTutorial-1.0-SNAPSHOT.jar

早期版本也有另一种写法:

$ bin/flink run -m yarn-cluster -c online.chenyunde.flink.StreamWordCount FlinkTutorial-1.0-SNAPSHOT.jar

注意这里是通过参数-m yarn-cluster 指定向 YARN 集群提交任务。
(2)在 YARN 的 ResourceManager 界面查看执行情况

在这里插入图片描述
点击可以打开 Flink Web UI 页面进行监控
在这里插入图片描述

(3)可以使用命令行查看或取消作业,命令如下。

$ ./bin/flink list -t yarn-per-job -Dyarn.application.id=application_XXXX_YY
$ ./bin/flink cancel -t yarn-per-job -Dyarn.application.id=application_XXXX_YY <jobId>

这里的 application_XXXX_YY 是当前应用的 ID,是作业的 ID。注意如果取消作业,整个 Flink 集群也会停掉。

3.4.4 应用模式部署

应用模式同样非常简单,与单作业模式类似,直接执行 flink run-application 命令即可。
(1)执行命令提交作业。

$ bin/flink run-application -t yarn-application -c online.chenyunde.flink.StreamWordCount FlinkTutorial-1.0-SNAPSHOT.jar

(2)在命令行中查看或取消作业。

$ ./bin/flink list -t yarn-application -Dyarn.application.id=application_XXXX_YY
$ ./bin/flink cancel -t yarn-application -Dyarn.application.id=application_XXXX_YY <jobId>

(3)也可以通过 yarn.provided.lib.dirs 配置选项指定位置,将 jar 上传到远程。

$ ./bin/flink run-application -t yarn-application-Dyarn.provided.lib.dirs="hdfs://myhdfs/my-remote-flink-dist-dir"hdfs://myhdfs/jars/my-application.jar

这种方式下 jar 可以预先上传到 HDFS,而不需要单独发送到集群,这就使得作业提交更加轻量了。

3.4.5 高可用

YARN 模式的高可用和独立模式(Standalone)的高可用原理不一样。Standalone 模式中, 同时启动多个 JobManager, 一个为“领导者(leader),其他为“后备”(standby), 当 leader 挂了, 其他的才会有一个成为 leader。 而 YARN 的高可用是只启动一个 Jobmanager, 当这个 Jobmanager 挂了之后, YARN 会再次启动一个, 所以其实是利用的 YARN 的重试次数来实现的高可用。
(1)在 yarn-site.xml 中配置。

<property>
	<name>yarn.resourcemanager.am.max-attempts</name>
	<value>4</value>
	<description>
		The maximum number of application master execution attempts.
	</description>
</property>

注意: 配置完不要忘记分发, 和重启 YARN。
(2)在 flink-conf.yaml 中配置。

yarn.application-attempts: 3
high-availability: zookeeper
high-availability.storageDir: hdfs://hadoop102:9820/flink/yarn/ha
high-availability.zookeeper.quorum: 
hadoop102:2181,hadoop103:2181,hadoop104:2181
high-availability.zookeeper.path.root: /flink-yarn

(3)启动 yarn-session。
(4)杀死 JobManager, 查看复活情况。
注意: yarn-site.xml 中配置的是 JobManager 重启次数的上限, flink-conf.xml 中的次数应该小于这个值。

3.5 K8S 模式

容器化部署是如今业界流行的一项技术,基于 Docker 镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是 Kubernetes(k8s),而 Flink 也在最近的版本中支持了 k8s 部署模式。基本原理与 YARN 是类似的,具体配置可以参见官网说明,这里我们就不做过多讲解了。

3.6 本章总结

  • Flink 支持多种不同的部署模式,还可以和不同的资源管理平台方便地集成。本章从快速启动的示例入手,接着介绍了 Flink 中几种部署模式的区别,并进一步针对不同的资源提供者展开讲解了具体的部署操作。在这个过程中,我们不仅熟悉了 Flink 的使用方法,而且接触到了很多内部运行原理的知识。
  • 本章重点部分在YARN模式的会话模式部署和单作业模式部署,这是用的比较多的两种模式部署。
  • 关于 Flink 运行时组件概念的作用,以及作业提交运行的流程架构,我们会在下一章进一步详细展开。

第 4 章 Flink 运行时架构

  • 我们已经对 Flink 的主要特性和部署提交有了基本的了解,那它的内部又是怎样工作的,集群配置设置的一些参数又到底有什么含义呢?
  • 接下来我们就将钻研 Flink 内部,探讨它的运行时架构,详细分析在不同部署环境中的作业提交流程,深入了解 Flink 设计架构中的主要概念和原理。

4.1 系统架构

  • 对于数据处理系统的架构,最简单的实现方式当然就是单节点。当数据量增大、处理计算更加复杂时,我们可以考虑增加 CPU 数量、加大内存,也就是让这一台机器变得性能更强大,从而提高吞吐量——这就是所谓的 SMP(Symmetrical Multi-Processing,对称多处理)架构。但是这样做问题非常明显:所有 CPU 是完全平等、共享内存和总线资源的,这就势必造成资源竞争;而且随着 CPU 核心数量的增加,机器的成本会指数增长,所以 SMP 的可扩展性是比较差的,无法应对海量数据的处理场景。
  • 于是人们提出了“不共享任何东西”(share-nothing)的分布式架构。从以 Greenplum 为代表的 MPP(Massively Parallel Processing,大规模并行处理)架构,到 Hadoop、Spark 为代表的批处理架构,再到 Storm、Flink 为代表的流处理架构,都是以分布式作为系统架构的基本形态的。
  • 我们已经知道,Flink 就是一个分布式的并行流处理系统。简单来说,它会由多个进程构成,这些进程一般会分布运行在不同的机器上。
  • 正如一个团队,人多了就会难以管理;对于一个分布式系统来说,也需要面对很多棘手的问题。其中的核心问题有:集群中资源的分配和管理、进程协调调度、持久化和高可用的数据存储,以及故障恢复。
  • 对于这些分布式系统的经典问题,业内已有比较成熟的解决方案和服务。所以 Flink 并不会自己去处理所有的问题,而是利用了现有的集群架构和服务,这样它就可以把精力集中在核心工作——分布式数据流处理上了。Flink 可以配置为独立(Standalone)集群运行,也可以方便地跟一些集群资源管理工具集成使用,比如 YARN、Kubernetes 和 Mesos。Flink 也不会自己去提供持久化的分布式存储,而是直接利用了已有的分布式文件系统(比如 HDFS)或者对象存储(比如 S3)。而对于高可用的配置,Flink 是依靠 Apache ZooKeeper 来完成的。
  • 我们所要重点了解的,就是在 Flink 中有哪些组件、是怎样具体实现一个分布式流处理系统的。如果大家对 Spark 或者 Storm 比较熟悉,那么稍后就会发现,Flink 其实有类似的概念和架构。

4.1.1 整体构成

Flink 的运行时架构中,最重要的就是两大组件:作业管理器(JobManger)和任务管理器(TaskManager)。对于一个提交执行的作业,JobManager 是真正意义上的“管理者(Master),负责管理调度,所以在不考虑高可用的情况下只能有一个;而 TaskManager 是“工作者”(Worker、Slave),负责执行任务处理数据,所以可以有一个或多个。Flink 的作业提交和任务处理时的系统如图 4-1 所示。

在这里插入图片描述

  • 这里首先要说明一下“客户端”。其实客户端并不是处理系统的一部分,它只负责作业的提交。具体来说,就是调用程序的 main 方法,将代码转换成“数据流图”(Dataflow Graph),并最终生成作业图(JobGraph),一并发送给 JobManager。提交之后,任务的执行其实就跟客户端没有关系了;我们可以在客户端选择断开与 JobManager 的连接, 也可以继续保持连接。之前我们在命令提交作业时,加上的-d 参数,就是表示分离模式(detached mode),也就是断开连接。
  • 当然,客户端可以随时连接到 JobManager,获取当前作业的状态和执行结果,也可以发送请求取消作业。我们在上一章中不论通过 Web UI 还是命令行执行“flink run”的相关操作,都是通过客户端实现的。
  • JobManager 和 TaskManagers 可以以不同的方式启动:
  1. 作为独立(Standalone)集群的进程,直接在机器上启动
  2. 在容器中启动
  3. 由资源管理平台调度启动,比如 YARN、K8S
  • 这其实就对应着不同的部署方式。
  • TaskManager 启动之后,JobManager 会与它建立连接,并将作业图(JobGraph)转换成可执行的“执行图”(ExecutionGraph)分发给可用的 TaskManager,然后就由 TaskManager 具体执行任务。接下来,我们就具体介绍一下 JobManger 和 TaskManager 在整个过程中扮演的角色。

4.1.2 作业管理器(JobManager)

JobManager 是一个 Flink 集群中任务管理和调度的核心,是控制应用执行的主进程。也就是说,每个应用都应该被唯一的 JobManager 所控制执行。当然,在高可用(HA)的场景下,可能会出现多个 JobManager;这时只有一个是正在运行的领导节点(leader),其他都是备用节点(standby)。
JobManger 又包含 3 个不同的组件,下面我们一一讲解。

  1. JobMaster
  • JobMaster 是 JobManager 中最核心的组件,负责处理单独的作业(Job)。所以 JobMaster和具体的 Job 是一一对应的,多个 Job 可以同时运行在一个 Flink 集群中, 每个 Job 都有一个自己的 JobMaster。需要注意在早期版本的 Flink 中,没有 JobMaster 的概念;而JobManager的概念范围较小,实际指的就是现在所说的 JobMaster。
  • 在作业提交时,JobMaster 会先接收到要执行的应用。这里所说“应用”一般是客户端提交来的,包括:Jar 包,数据流图(dataflow graph),和作业图(JobGraph)。
  • JobMaster 会把 JobGraph 转换成一个物理层面的数据流图,这个图被叫作“执行图”(ExecutionGraph),它包含了所有可以并发执行的任务。 JobMaster 会向资源管理器(ResourceManager)发出请求,申请执行任务必要的资源。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的 TaskManager 上。
  • 而在运行过程中,JobMaster 会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调。
  1. 资源管理器(ResourceManager)
  • ResourceManager 主要负责资源的分配和管理,在 Flink 集群中只有一个。所谓“资源”,主要是指 TaskManager 的任务槽(task slots)。任务槽就是 Flink 集群中的资源调配单元,包含了机器用来执行计算的一组 CPU 和内存资源。每一个任务(Task)都需要分配到一个 slot 上执行。
  • 这里注意要把 Flink 内置的 ResourceManager 和其他资源管理平台(比如 YARN)的
    ResourceManager 区分开。
  • Flink 的 ResourceManager,针对不同的环境和资源管理平台(比如 Standalone 部署,或者YARN),有不同的具体实现。在 Standalone 部署时,因为 TaskManager 是单独启动的(没有Per-Job 模式),所以 ResourceManager 只能分发可用 TaskManager 的任务槽,不能单独启动新TaskManager。
  • 而在有资源管理平台时,就不受此限制。当新的作业申请资源时,ResourceManager 会将有空闲槽位的 TaskManager 分配给 JobMaster。如果 ResourceManager 没有足够的任务槽,它还可以向资源提供平台发起会话,请求提供启动 TaskManager 进程的容器。另外,ResourceManager 还负责停掉空闲的 TaskManager,释放计算资源。
  1. 分发器(Dispatcher)
  • Dispatcher 主要负责提供一个 REST 接口,用来提交应用,并且负责为每一个新提交的作业启动一个新的 JobMaster 组件。Dispatcher 也会启动一个 Web UI,用来方便地展示和监控作业执行的信息。Dispatcher 在架构中并不是必需的,在不同的部署模式下可能会被忽略掉。

4.1.3 任务管理器(TaskManager)

  • TaskManager 是 Flink 中的工作进程,数据流的具体计算就是它来做的,所以也被称为
    “Worker”。Flink 集群中必须至少有一个 TaskManager;当然由于分布式计算的考虑,通常会有多个 TaskManager 运行,每一个 TaskManager 都包含了一定数量的任务槽(task slots)。Slot是资源调度的最小单位,slot 的数量限制了 TaskManager 能够并行处理的任务数量。
  • 启动之后,TaskManager 会向资源管理器注册它的 slots;收到资源管理器的指令后,TaskManager 就会将一个或者多个槽位提供给 JobMaster 调用,JobMaster 就可以分配任务来执行了。
  • 在执行过程中,TaskManager 可以缓冲数据,还可以跟其他运行同一应用的 TaskManager交换数据。

4.2 作业提交流程

了解了 Flink 运行时的基本组件和系统架构,我们再来梳理一下作业提交的具体流程。

4.2.1 高层级抽象视角

Flink 的提交流程,随着部署模式、资源管理平台的不同,会有不同的变化。首先我们从一个高层级的视角,来做一下抽象提炼,看一看作业提交时宏观上各组件是怎样交互协作的。

在这里插入图片描述

如图 4-2 所示,具体步骤如下:
(1) 一般情况下,由客户端(App)通过分发器提供的 REST 接口,将作业提交给JobManager。
(2)由分发器启动 JobMaster,并将作业(包含 JobGraph)提交给 JobMaster。
(3)JobMaster 将 JobGraph 解析为可执行的 ExecutionGraph,得到所需的资源数量,然后向资源管理器请求资源(slots)。
(4)资源管理器判断当前是否由足够的可用资源;如果没有,启动新的 TaskManager。 (5)TaskManager 启动之后,向 ResourceManager 注册自己的可用任务槽(slots)。
(6)资源管理器通知 TaskManager 为新的作业提供 slots。
(7)TaskManager 连接到对应的 JobMaster,提供 slots。
(8)JobMaster 将需要执行的任务分发给 TaskManager。
(9)TaskManager 执行任务,互相之间可以交换数据。

如果部署模式不同,或者集群环境不同(例如 Standalone、YARN、K8S 等),其中一些步骤可能会不同或被省略,也可能有些组件会运行在同一个 JVM 进程中。比如我们在上一章实践过的独立集群环境的会话模式,就是需要先启动集群,如果资源不够,只能等待资源释放,而不会直接启动新的 TaskManager。
接下来我们就具体介绍一下不同部署环境下的提交流程。

4.2.2 独立模式(Standalone)

在独立模式(Standalone)下,只有会话模式和应用模式两种部署方式。两者整体来看流程是非常相似的:TaskManager 都需要手动启动,所以当 ResourceManager 收到 JobMaster的请求时,会直接要求 TaskManager 提供资源。而 JobMaster 的启动时间点,会话模式是预先启动,应用模式则是在作业提交时启动。提交的整体流程如图 4-3 所示。

在这里插入图片描述

我们发现除去第 4 步不会启动 TaskManager,而且直接向已有的 TaskManager 要求资源,其他步骤与上一节所讲抽象流程完全一致。

4.2.3 YARN 集群

接下来我们再看一下有资源管理平台时,具体的提交流程。我们以 YARN 为例,分不同的部署模式来做具体说明。

  1. 会话(Session)模式
    在会话模式下,我们需要先启动一个 YARN session,这个会话会创建一个 Flink 集群。
    在这里插入图片描述

这里只启动了 JobManager,而 TaskManager 可以根据需要动态地启动。在 JobManager 内部,由于还没有提交作业,所以只有 ResourceManager 和 Dispatcher 在运行,如图 4-4 所示。

在这里插入图片描述

接下来就是真正提交作业的流程,如图 4-5 所示:
(1)客户端通过 REST 接口,将作业提交给分发器。
(2)分发器启动 JobMaster,并将作业(包含 JobGraph)提交给 JobMaster。
(3)JobMaster 向资源管理器请求资源(slots)。
(4)资源管理器向 YARN 的资源管理器请求 container 资源。
(5)YARN 启动新的 TaskManager 容器。
(6)TaskManager 启动之后,向 Flink 的资源管理器注册自己的可用任务槽。
(7)资源管理器通知 TaskManager 为新的作业提供 slots。
(8)TaskManager 连接到对应的 JobMaster,提供 slots。
(9)JobMaster 将需要执行的任务分发给 TaskManager,执行任务。
可见,整个流程除了请求资源时要“上报”YARN 的资源管理器,其他与 4.2.1 节所述抽象流程几乎完全一样。

  1. 单作业(Per-Job)模式
    在单作业模式下,Flink 集群不会预先启动,而是在提交作业时,才启动新的 JobManager。
    具体流程如图 4-6 所示。

在这里插入图片描述

(1)客户端将作业提交给 YARN 的资源管理器,这一步中会同时将 Flink 的 Jar 包和配置上传到 HDFS,以便后续启动 Flink 相关组件的容器。
(2)YARN 的资源管理器分配 Container 资源,启动 Flink JobManager,并将作业提交给
JobMaster。这里省略了 Dispatcher 组件。
(3)JobMaster 向资源管理器请求资源(slots)。
(4)资源管理器向 YARN 的资源管理器请求 container 资源。
(5)YARN 启动新的 TaskManager 容器。
(6)TaskManager 启动之后,向 Flink 的资源管理器注册自己的可用任务槽。
(7)资源管理器通知 TaskManager 为新的作业提供 slots。
(8)TaskManager 连接到对应的 JobMaster,提供 slots。
(9)JobMaster 将需要执行的任务分发给 TaskManager,执行任务。
可见,区别只在于 JobManager 的启动方式,以及省去了分发器。当第 2 步作业提交给JobMaster,之后的流程就与会话模式完全一样了。

  1. 应用(Application)模式
    应用模式与单作业模式的提交流程非常相似,只是初始提交给 YARN 资源管理器的不再是具体的作业,而是整个应用。一个应用中可能包含了多个作业,这些作业都将在 Flink 集群中启动各自对应的 JobMaster。

4.3 一些重要概念

在这里插入图片描述

我们现在已经了解 Flink 运行时的核心组件和整体架构,也明白了不同场景下作业提交的具体流程。但有些细节还需要进一步思考:一个具体的作业,是怎样从我们编写的代码,转换成 TaskManager 可以执行的任务的呢?JobManager 收到提交的作业,又是怎样确定总共有多少任务、需要多少资源呢?接下来我们就从一些重要概念入手,对这些问题做详细的展开讲解。

4.3.1 数据流图(Dataflow Graph)

在这里插入图片描述

  • Flink 是流式计算框架。它的程序结构,其实就是定义了一连串的处理操作,每一个数据输入之后都会依次调用每一步计算。在 Flink 代码中,我们定义的每一个处理转换操作都叫作“算子”(Operator),所以我们的程序可以看作是一串算子构成的管道,数据则像水流一样有序地流过。比如在之前的 WordCount 代码中,基于执行环境调用的socketTextStream()方法,就是一个读取文本流的算子;而后面的flatMap()方法,则是将字符串数据进行分词、转换成二元组的算子。
  • 所有的 Flink 程序都可以归纳为由三部分构成:Source、Transformation 和 Sink。
    ⚫ Source 表示“源算子”,负责读取数据源。
    ⚫ Transformation 表示“转换算子”,利用各种算子进行处理加工。
    ⚫ Sink 表示“下沉算子”,负责数据的输出。

在这里插入图片描述

  • 在运行时,Flink 程序会被映射成所有算子按照逻辑顺序连接在一起的一张图,这被称为“逻辑数据流”(logical dataflow),或者叫“数据流图”(dataflow graph)。我们提交作业之后,打开 Flink 自带的 Web UI,点击作业就能看到对应的 dataflow,如图 4-7 所示。在数据流图中,可以清楚地看到 Source、Transformation、Sink 三部分。
  • 数据流图类似于任意的有向无环图(DAG),这一点与 Spark 等其他框架是一致的。图中的每一条数据流(dataflow)以一个或多个 source 算子开始,以一个或多个 sink 算子结束。
  • 在大部分情况下,dataflow 中的算子,和程序中的转换运算是一一对应的关系。那是不是说,我们代码中基于 DataStream API 的每一个方法调用,都是一个算子呢?
  • 并非如此。除了 Source 读取数据和 Sink 输出数据,一个中间的转换算子(Transformation Operator)必须是一个转换处理的操作;而在代码中有一些方法调用,数据是没有完成转换的。可能只是对属性做了一个设置,也可能定义的是数据的传递方式而非转换,又或者是需要几个方法合在一起才能表达一个完整的转换操作。例如,在之前的代码中,我们用到了定义分组的方法 keyBy,它就只是一个数据分区操作,而并不是一个算子。事实上,代码中我们可以看到调用其他转换操作之后返回的数据类型是 SingleOutputStreamOperator,说明这是一个算子操作;而 keyBy 之后返回的数据类型是 KeyedStream。感兴趣的读者也可以自行提交任务在 Web UI 中查看。

4.3.2 并行度(Parallelism)

我们已经清楚了算子和数据流图的概念,那最终执行的任务又是什么呢?容易想到,一个算子操作就应该是一个任务。那是不是程序中的算子数量,就是最终执行的任务数呢?

  1. 什么是并行计算
  • 要解答这个问题,我们需要先梳理一下其他框架分配任务、数据处理的过程。对于 Spark而言,是把根据程序生成的 DAG 划分阶段(stage)、进而分配任务的。而对于 Flink 这样的流式引擎,其实没有划分 stage 的必要。因为数据是连续不断到来的,我们完全可以按照数据流图建立一个“流水线”,前一个操作处理完成,就发往处理下一步操作的节点。如果说 Spark基于 MapReduce 架构的思想是“数据不动代码动”,那么 Flink 就类似“代码不动数据流动”,原因就在于流式数据本身是连续到来的、我们不会同时传输所有数据,这其实是更符合数据流本身特点的处理方式。
  • 在大数据场景下,我们都是依靠分布式架构做并行计算,从而提高数据吞吐量的。既然处理完一个操作就可以把数据发往别处,那我们就可以将不同的算子操作任务,分配到不同的节点上执行了。这样就对任务做了分摊,实现了并行处理。
  • 但是仔细分析会发现,这种“并行”其实并不彻底。因为算子之间是有执行顺序的,对一条数据来说必须依次执行;而一个算子在同一时刻只能处理一个数据。比如之前 WordCount,一条数据到来之后,我们必须先用 source 算子读进来、再做 flatMap 转换;一条数据被 source读入的同时,之前的数据可能正在被 flatMap 处理,这样不同的算子任务是并行的。但如果多条数据同时到来,一个算子是没有办法同时处理的,我们还是需要等待一条数据处理完、再处理下一条数据——这并没有真正提高吞吐量。
  • 所以相对于上述的“任务并行”,我们真正关心的,是“数据并行”。也就是说,多条数据
    同时到来,我们应该可以同时读入,同时在不同节点执行 flatMap 操作。
  1. 并行子任务和并行度
  • 怎样实现数据并行呢?其实也很简单,我们把一个算子操作,“复制”多份到多个节点,数据来了之后就可以到其中任意一个执行。这样一来,一个算子任务就被拆分成了多个并行的“子任务”(subtasks),再将它们分发到不同节点,就真正实现了并行计算。
  • 在 Flink 执行过程中,每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。

在这里插入图片描述

  • 一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包含并行子任务的数据流,就是并行数据流,它需要多个分区(stream partition)来分配并行任务。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。
  • 如图 4-8 所示,当前数据流中有 source、map、window、sink 四个算子,除最后 sink,其他算子的并行度都为 2。整个程序包含了 7 个子任务,至少需要 2 个分区来并行执行。我们可以说,这段流处理程序的并行度就是 2。
  1. 并行度的设置
    在 Flink 中,可以用不同的方法来设置并行度,它们的有效范围和优先级别也是不同的。

(1)代码中设置

  • 我们在代码中,可以很简单地在算子后跟着调用 setParallelism()方法,来设置当前算子的并行度:
stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);
  • 这种方式设置的并行度,只针对当前算子有效。
  • 另外,我们也可以直接调用执行环境的 setParallelism()方法,全局设定并行度:
env.setParallelism(2);
  • 这样代码中所有算子,默认的并行度就都为 2 了。我们一般不会在程序中设置全局并行度,因为如果在程序中对全局并行度进行硬编码,会导致无法动态扩容。这里要注意的是,由于 keyBy 不是算子,所以无法对 keyBy 设置并行度。

(2)提交应用时设置

  • 在使用 flink run 命令提交应用时,可以增加-p 参数来指定当前应用程序执行的并行度,它的作用类似于执行环境的全局设置:
bin/flink run –p 2 –c online.chenyunde.flink.StreamWordCount ./FlinkTutorial-1.0-SNAPSHOT.jar
  • 如果我们直接在 Web UI 上提交作业,也可以在对应输入框中直接添加并行度。

(3)配置文件中设置
我们还可以直接在集群的配置文件 flink-conf.yaml 中直接更改默认并行度:

parallelism.default: 2
  • 这个设置对于整个集群上提交的所有作业有效,初始值为 1。无论在代码中设置、还是提交时的-p 参数,都不是必须的;所以在没有指定并行度的时候,就会采用配置文件中的集群默认并行度。在开发环境中,没有配置文件,默认并行度就是当前机器的 CPU 核心数。这也就解释了为什么我们在第二章运行 WordCount 流处理程序时,会看到结果前有 1~4 的分区编号——运行程序的电脑是 4 核 CPU,那么开发环境默认的并行度就是 4。

  • 我们可以总结一下所有的并行度设置方法,它们的优先级如下:

  1. 对于一个算子,首先看在代码中是否单独指定了它的并行度,这个特定的设置优先级最高,会覆盖后面所有的设置。
  2. 如果没有单独设置,那么采用当前代码中执行环境全局设置的并行度。
  3. 如果代码中完全没有设置,那么采用提交时-p 参数指定的并行度。
  4. 如果提交时也未指定-p 参数,那么采用集群配置文件中的默认并行度。
  • 这里需要说明的是,算子的并行度有时会受到自身具体实现的影响。比如之前我们用到的读取 socket 文本流的算子 socketTextStream,它本身就是非并行的 Source 算子,所以无论怎么设置,它在运行时的并行度都是 1,对应在数据流图上就只有一个并行子任务。这一点大家可以自行在 Web UI 上查看验证。
  • 那么实践中怎样设置并行度比较好呢?那就是在代码中只针对算子设置并行度,不设置全局并行度,这样方便我们提交作业时进行动态扩容。

4.3.3 算子链(Operator Chain)

关于“一个作业有多少任务”这个问题,现在已经基本解决了。但如果我们仔细观察 Web UI 上给出的图,如图 4-9 所示,上面的节点似乎跟代码中的算子又不是一一对应的。

在这里插入图片描述

很明显,这里的一个节点,会把转换处理的很多个任务都连接在一起,合并成了一个“大
任务”。这又是怎么回事呢?

  1. 算子间的数据传输
    回到上一小节的例子,我们先来考察一下算子任务之间数据传输的方式。

在这里插入图片描述

如图 4-10 所示,一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)的直通 (forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。
(1)一对一(One-to-one,forwarding)

  • 这种模式下,数据流维护着分区以及元素的顺序。比如图中的 source 和 map 算子,source算子读取数据之后,可以直接发送给 map 算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。这就意味着 map 算子的子任务,看到的元素个数和顺序跟 source 算子的子任务产生的完全一样,保证着“一对一”的关系。map、filter、flatMap 等算子都是这种one-to-one的对应关系。
    这种关系类似于 Spark 中的窄依赖。

(2)重分区(Redistributing)

  • 在这种模式下,数据流的分区会发生改变。比图中的 map 和后面的 keyBy/window 算子之间(这里的 keyBy 是数据传输算子,后面的 window、apply 方法共同构成了 window 算子),以及 keyBy/window 算子和 Sink 算子之间,都是这样的关系。
    每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。例如,keyBy()是分组操作,本质上基于键(key)的哈希值(hashCode)进行了重分区;而当并行度改变时,比如从并行度为 2 的 window 算子,要传递到并行度为 1 的 Sink 算子,这时的数据传输方式是再平衡(rebalance),会把数据均匀地向下游子任务分发出去。这些传输方式都会引起重分区(redistribute)的过程,这一过程类似于 Spark 中的 shuffle。
    总体说来,这种算子间的关系类似于 Spark 中的宽依赖。
  1. 合并算子链
    在 Flink 中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分,如图 4-11 所示。每个 task会被一个线程执行。这样的技术被称为“算子链”(Operator Chain)。

在这里插入图片描述

  • 比如在图 4-11 中的例子中,Source 和 map 之间满足了算子链的要求,所以可以直接合并在一起,形成了一个任务;因为并行度为 2,所以合并后的任务也有两个并行子任务。这样,这个数据流图所表示的作业最终会有 5 个任务,由 5 个线程并行执行。
  • Flink 为什么要有算子链这样一个设计呢?这是因为将算子链接成 task 是非常有效的优化:可以减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。
  • Flink 默认会按照算子链的原则进行链接合并,如果我们想要禁止合并或者自行定义,也可以在代码中对算子做一些特定的设置:
// 禁用算子链
.map(word -> Tuple2.of(word, 1L)).disableChaining();
// 从当前算子开始新链
.map(word -> Tuple2.of(word, 1L)).startNewChain()

4.3.4 作业图(JobGraph)与执行图(ExecutionGraph)

  • 至此,我们已经彻底了解了由代码生成任务的过程,现在来做个梳理总结。
  • 由 Flink 程序直接映射成的数据流图(dataflow graph),也被称为逻辑流图(logical StreamGraph),因为它们表示的是计算逻辑的高级视图。到具体执行环节时,我们还要考虑并行子任务的分配、数据在任务间的传输,以及合并算子链的优化。为了说明最终应该怎样执行一个流处理程序,Flink 需要将逻辑流图进行解析,转换为物理数据流图。
  • 在这个转换过程中,有几个不同的阶段,会生成不同层级的图,其中最重要的就是作业图(JobGraph)和执行图(ExecutionGraph)。Flink 中任务调度执行的图,按照生成顺序可以分成四层:

逻辑流图(StreamGraph)→ 作业图(JobGraph)→ 执行图(ExecutionGraph)→ 物理
图(Physical Graph)

  • 我们可以回忆一下之前处理 socket 文本流的 StreamWordCount 程序:
env.socketTextStream().flatMap().keyBy(0).sum(1).print();

如果提交时设置并行度为 2:

bin/flink run –p 2 –c online.chenyunde.flink.StreamWordCount ./FlinkTutorial-1.0-SNAPSHOT.jar

那么根据之前的分析,除了 socketTextStream()是非并行的 Source 算子,它的并行度始终为 1,其他算子的并行度都为 2。

接下来我们分析一下程序对应四层调度图的演变过程,如图 4-12 所示。

在这里插入图片描述

  1. 逻辑流图(StreamGraph)
  • 这是根据用户通过 DataStream API 编写的代码生成的最初的 DAG 图,用来表示程序的拓扑结构。这一步一般在客户端完成。
  • 我们可以看到,逻辑流图中的节点,完全对应着代码中的四步算子操作:
  • 源算子 Source(socketTextStream())→扁平映射算子 Flat Map(flatMap()) →分组聚合算子Keyed Aggregation(keyBy/sum()) →输出算子 Sink(print())。
  1. 作业图(JobGraph)
  • StreamGraph 经过优化后生成的就是作业图(JobGraph),这是提交给 JobManager 的数据结构,确定了当前作业中所有任务的划分。主要的优化为: 将多个符合条件的节点链接在一起合并成一个任务节点,形成算子链,这样可以减少数据交换的消耗。JobGraph 一般也是在客户端生成的,在作业提交时传递给 JobMaster。
  • 在图 4-12 中,分组聚合算子(Keyed Aggregation)和输出算子 Sink(print)并行度都为 2,而且是一对一的关系,满足算子链的要求,所以会合并在一起,成为一个任务节点。
  1. 执行图(ExecutionGraph)
  • JobMaster 收到 JobGraph 后,会根据它来生成执行图(ExecutionGraph)。ExecutionGraph是 JobGraph 的并行化版本,是调度层最核心的数据结构。
  • 从图 4-12 中可以看到,与 JobGraph 最大的区别就是按照并行度对并行子任务进行了拆分,并明确了任务间数据传输的方式。
  1. 物理图(Physical Graph)
  • JobMaster 生成执行图后, 会将它分发给 TaskManager;各个 TaskManager 会根据执行图部署任务,最终的物理执行过程也会形成一张“图”,一般就叫作物理图(Physical Graph)。这只是具体执行层面的图,并不是一个具体的数据结构。
  • 对应在上图 4-12 中,物理图主要就是在执行图的基础上,进一步确定数据存放的位置和收发的具体方式。有了物理图,TaskManager 就可以对传递来的数据进行处理计算了。
  • 所以我们可以看到,程序里定义了四个算子操作:源(Source)->转换(flatMap)->分组聚合(keyBy/sum)->输出(print);合并算子链进行优化之后,就只有三个任务节点了;再考虑并行度后,一共有 5 个并行子任务,最终需要 5 个线程来执行。

4.3.5 任务(Tasks)和任务槽(Task Slots)

通过前几小节的介绍,我们对任务的生成和分配已经非常清楚了。上一小节中我们最终得到结论:作业划分为 5 个并行子任务,需要 5 个线程并行执行。那在我们将应用提交到 Flink集群之后,到底需要占用多少资源呢?是否需要 5 个 TaskManager 来运行呢?

  1. 任务槽(Task Slots)
  • 之前已经提到过,Flink 中每一个 worker(也就是 TaskManager)都是一个 JVM 进程,它可以启动多个独立的线程,来并行执行多个子任务(subtask)。
  • 所以如果想要执行 5 个任务,并不一定非要 5 个 TaskManager,我们可以让 TaskManager多线程执行任务。如果可以同时运行 5 个线程,那么只要一个 TaskManager 就可以满足我们之前程序的运行需求了。
  • 很显然,TaskManager 的计算资源是有限的,并不是所有任务都可以放在一个TaskManager上并行执行。并行的任务越多,每个线程的资源就会越少。那一个 TaskManager 到底能并行处理多少个任务呢?为了控制并发量,我们需要在 TaskManager 上对每个任务运行所占用的资源做出明确的划分,这就是所谓的任务槽(task slots)。
  • slot 的概念其实在分布式框架中并不陌生。所谓的“槽”是一种形象的表达。如果大家见过传说中的“卡带式游戏机”,就会对它有更直观的认识:游戏机上的卡槽提供了可以运行游戏的接口和资源,我们把游戏卡带插入卡槽,就可以占用游戏机的计算资源,执行卡带中的游戏程序了。一台经典的小霸王游戏机(如图 4-13)一般只有一个卡槽,而在 TaskManager 中,我们可以设置多个 slot,只要插入“卡带”——也就是分配好的任务,就可以并行执行了。

在这里插入图片描述
每个任务槽(task slot)其实表示了 TaskManager 拥有计算资源的一个固定大小的子集。这些资源就是用来独立执行一个子任务的。

在这里插入图片描述
假如一个 TaskManager 有三个 slot,那么它会将管理的内存平均分成三份,每个 slot 独自占据一份。这样一来,我们在 slot 上执行一个子任务时,相当于划定了一块内存“专款专用”,就不需要跟来自其他作业的任务去竞争内存资源了。所以现在我们只要 2 个 TaskManager,就可以并行处理分配好的 5 个任务了,如图 4-14 所示。

  1. 任务槽数量的设置
  • 我们可以通过集群的配置文件来设定 TaskManager 的 slot 数量:
	taskmanager.numberOfTaskSlots: 8
  • 通过调整 slot 的数量,我们就可以控制子任务之间的隔离级别。

  • 具体来说,如果一个 TaskManager 只有一个 slot,那将意味着每个任务都会运行在独立的JVM 中(当然,该 JVM 可能是通过一个特定的容器启动的);而一个 TaskManager 设置多个slot 则意味着多个子任务可以共享同一个 JVM。它们的区别在于:前者任务之间完全独立运行,隔离级别更高、彼此间的影响可以降到最小;而后者在同一个 JVM 进程中运行的任务,将共享 TCP 连接和心跳消息,也可能共享数据集和数据结构,这就减少了每个任务的运行开销,在降低隔离级别的同时提升了性能。

  • 需要注意的是,slot 目前仅仅用来隔离内存,不会涉及 CPU 的隔离。在具体应用时,可以将 slot 数量配置为机器的 CPU 核心数,尽量避免不同任务之间对 CPU 的竞争。这也是开发环境默认并行度设为机器 CPU 数量的原因。

  1. 任务对任务槽的共享
  • 这样看来,一共有多少任务,我们就需要有多少 slot 来并行处理它们。不过实际提交作业进行测试就会发现,我们之前的 WordCount 程序设置并行度为 2 提交,一共有 5 个并行子任务,可集群即使只有 2 个 task slot 也是可以成功提交并运行的。这又是为什么呢?
  • 我们可以基于之前的例子继续扩展。如果我们保持 sink 任务并行度为 1 不变,而作业提交时设置全局并行度为 6,那么前两个任务节点就会各自有 6 个并行子任务,整个流处理程序则有 13 个子任务。那对于 2 个 TaskManager、每个有 3 个 slot 的集群配置来说,还能否正常运行呢?

在这里插入图片描述

  • 完全没有问题。这是因为默认情况下,Flink 是允许子任务共享 slot 的。如图 4-15 所示,只要属于同一个作业,那么对于不同任务节点的并行子任务,就可以放到同一个 slot 上执行。所以对于第一个任务节点 source→map,它的 6 个并行子任务必须分到不同的 slot 上(如果在同一 slot 就没法数据并行了),而第二个任务节点 keyBy/window/apply 的并行子任务却可以和第一个任务节点共享 slot。
  • 于是最终结果就变成了:每个任务节点的并行子任务一字排开,占据不同的 slot;而不同的任务节点的子任务可以共享 slot。一个 slot 中,可以将程序处理的所有任务都放在这里执行,我们把它叫作保存了整个作业的运行管道(pipeline)。
  • 这个特性看起来有点奇怪:我们不是希望并行处理、任务之间相互隔离吗,为什么这里又允许共享 slot 呢?
  • 我们知道,一个 slot 对应了一组独立的计算资源。在之前不做共享的时候,每个任务都平等地占据了一个 slot,但其实不同的任务对资源的占用是不同的。例如这里的前两个任务,source/map 尽管是两个算子合并算子链得到的,但它只是基本的数据读取和简单转换,计算耗时极短,一般也不需要太大的内存空间;而 window 算子所做的窗口操作,往往会涉及大量的数据、状态存储和计算,我们一般把这类任务叫作“资源密集型”(intensive)任务。当它们被平等地分配到独立的 slot 上时,实际运行我们就会发现,大量数据到来时 source/map 和 sink任务很快就可以完成,但 window 任务却耗时很久;于是下游的 sink 任务占据的 slot 就会等待闲置,而上游的 source/map 任务受限于下游的处理能力,也会在快速处理完一部分数据后阻塞对应的资源开始等待(相当于处理背压)。这样资源的利用就出现了极大的不平衡,“忙的忙死,闲的闲死”。
  • 解决这一问题的思路就是允许 slot 共享。当我们将资源密集型和非密集型的任务同时放到一个 slot 中,它们就可以自行分配对资源占用的比例,从而保证最重的活平均分配给所有的
    TaskManager。
  • slot 共享另一个好处就是允许我们保存完整的作业管道。这样一来,即使某个 TaskManager出现故障宕机,其他节点也可以完全不受影响,作业的任务可以继续执行。
  • 另外,同一个任务节点的并行子任务是不能共享 slot 的,所以允许 slot 共享之后,运行作业所需的 slot 数量正好就是作业中所有算子并行度的最大值。这样一来,我们考虑当前集群需要配置多少 slot 资源时,就不需要再去详细计算一个作业总共包含多少个并行子任务了,只看最大的并行度就够了。
  • 当然,Flink 默认是允许 slot 共享的,如果希望某个算子对应的任务完全独占一个 slot,或者只有某一部分算子共享 slot,我们也可以通过设置“slot 共享组”(SlotSharingGroup)手动
    指定:
.map(word -> Tuple2.of(word, 1L)).slotSharingGroup(1);
  • 这样,只有属于同一个 slot 共享组的子任务,才会开启 slot 共享;不同组之间的任务是完全隔离的,必须分配到不同的 slot 上。在这种场景下,总共需要的 slot 数量,就是各个 slot共享组最大并行度的总和。
  1. 任务槽和并行度的关系
  • 直观上看,slot 就是 TaskManager 为了并行执行任务而设置的,那它和之前讲过的并行度(Parallelism)是不是一回事呢?

在这里插入图片描述

  • Slot 和并行度确实都跟程序的并行执行有关,但两者是完全不同的概念。简单来说,task slot 是 静 态 的 概 念 , 是 指 TaskManager 具 有 的 并 发 执 行 能 力 , 可 以 通 过 参 数taskmanager.numberOfTaskSlots 进行配置;而并行度(parallelism)是动态概念,也就是TaskManager 运行程序时实际使用的并发能力,可以通过参数 parallelism.default 进行配置。换句话说,并行度如果小于等于集群中可用 slot 的总数,程序是可以正常执行的,因为 slot 不一定要全部占用,有十分力气可以只用八分;而如果并行度大于可用 slot 总数,导致超出了并行能力上限,那么心有余力不足,程序就只好等待资源管理器分配更多的资源了。
  • 下面我们再举一个具体的例子。假设一共有 3 个 TaskManager,每一个 TaskManager 中的slot 数量设置为 3 个,那么一共有 9 个 task slot,如图 4-16 所示,表示集群最多能并行执行 9个任务。
  • 而我们定义 WordCount 程序的处理操作是四个转换算子:

source→ flatMap→ reduce→ sink

  • 当所有算子并行度相同时,容易看出 source 和 flatMap 可以合并算子链,于是最终有三个任务节点。
  • 如果我们没有任何并行度设置,而配置文件中默认 parallelism.default=1,那么程序运行的默认并行度为 1,总共有 3 个任务。由于不同算子的任务可以共享任务槽,所以最终占用的 slot 只有 1 个。9 个 slot 只用了 1 个,有 8 个空闲,如图 4-17 中的 Example 1 所示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  • 如果我们更改默认参数,或者提交作业时设置并行度为 2,那么总共有 6 个任务,共享任务槽之后会占用 2 个 slot,如图 4-18 中 Example 2 所示。同样,就有 7 个 slot 空闲,计算资源没有充分利用。所以可以看到,设置合适的并行度才能提高效率。
  • 那对于这个例子,怎样设置并行度效率最高呢?当然是需要把所有的 slot 都利用起来。考虑到 slot 共享,我们可以直接把并行度设置为 9,这样所有 27 个任务就会完全占用 9 个 slot。这是当前集群资源下能执行的最大并行度,计算资源得到了充分的利用,如图 4-19 中 Example3 所示。
  • 另外再考虑对于某个算子单独设置并行度的场景。例如,如果我们考虑到输出可能是写入文件,那会希望不要并行写入多个文件,就需要设置 sink 算子的并行度为 1。这时其他的算子并行度依然为 9,所以总共会有 19 个子任务。根据 slot 共享的原则,它们最终还是会占用全部的 9 个 slot,而 sink 任务只在其中一个 slot 上执行,如图 4-20 中 Example 4 所示。通过这个例子也可以明确地看到,整个流处理程序的并行度,就应该是所有算子并行度中最大的那个,这代表了运行程序需要的 slot 数量。

4.4 本章总结

  • 在这一章,我们在之前部署运行的基础上,深入介绍了 Flink 的系统架构和不同组件,并进一步针对不同的部署模式详细讲述了作业提交和任务处理的流程。此外,通过展开讲解架构中的一些重要概念,解答了 Flink 任务调度的核心问题,并对分布式流处理架构的设计做了思
    考分析。
  • 本章内容不仅是 Flink 架构知识的学习,更是分布式处理思想的入门。我们可以通过 Flink这样一个经典框架的学习,触摸到分布式架构的底层原理。
  • Flink 流处理架构设计还涉及事件时间、状态管理以及检查点等重要概念,保证分布式流处理系统的低延迟、时间正确性和状态一致性。我们将在后面的章节对这些内容做详细展开。

第 5 章 DataStream API(基础篇)

  • 我们在第 2 章介绍 Flink 快速上手时,曾编写过一个简单的词频统计(WordCount)程序,相信读者已经对 Flink 的编程方式有了基本的认识。接下来,我们就将开始大量的代码练习,详细了解用于 Flink 程序开发的 API 用法。
  • Flink 有非常灵活的分层 API 设计,其中的核心层就是 DataStream/DataSet API。由于新版本已经实现了流批一体,DataSet API 将被弃用,官方推荐统一使用 DataStream API 处理流数据和批数据。由于内容较多,我们将会用几章的篇幅来做详细讲解,本章主要介绍基本的DataStream API 用法。
  • DataStream(数据流)本身是 Flink 中一个用来表示数据集合的类(Class),我们编写的Flink 代码其实就是基于这种数据类型的处理,所以这套核心 API 就以 DataStream 命名。对于批处理和流处理,我们都可以用这同一套 API 来实现。
  • DataStream 在用法上有些类似于常规的 Java 集合,但又有所不同。我们在代码中往往并不关心集合中具体的数据,而只是用 API 定义出一连串的操作来处理它们;这就叫作数据流的“转换”(transformations)。
  • 一个 Flink 程序,其实就是对 DataStream 的各种转换。具体来说,代码基本上都由以下部分构成,如图 5-1 所示:
  1. 获取执行环境(execution environment)
  2. 读取数据源(source)
  3. 定义基于数据的转换操作(transformations)
  4. 定义计算结果的输出位置(sink)
  5. 触发程序执行(execute)
    其中,获取环境和触发执行,都可以认为是针对执行环境的操作。所以本章我们就从执行环境、数据源(source)、转换操作(transformation)、输出(sink)四大部分,对常用的DataStream API 做基本介绍。
    在这里插入图片描述

5.1 执行环境(Execution Environment)

  • Flink 程序可以在各种上下文环境中运行:我们可以在本地 JVM 中执行程序,也可以提交到远程集群上运行。
  • 不同的环境,代码的提交运行的过程会有所不同。这就要求我们在提交作业执行计算时,首先必须获取当前 Flink 的运行环境,从而建立起与 Flink 框架之间的联系。只有获取了环境上下文信息,才能将具体的任务调度到不同的 TaskManager 执行。

5.1.1 创建执行环境

编 写 Flink 程 序 的 第 一 步 , 就 是 创 建 执 行 环 境 。 我 们 要 获 取 的 执 行 环 境 , 是StreamExecutionEnvironment 类的对象,这是所有 Flink 程序的基础。在代码中创建执行环境的方式,就是调用这个类的静态方法,具体有以下三种。

  1. getExecutionEnvironment
  • 最简单的方式,就是直接调用 getExecutionEnvironment 方法。它会根据当前运行的上下文直接得到正确的结果:如果程序是独立运行的,就返回一个本地执行环境;如果是创建了 jar包,然后从命令行调用它并提交到集群执行,那么就返回集群的执行环境。也就是说,这个方法会根据当前运行的方式,自行决定该返回什么样的运行环境。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

这种“智能”的方式不需要我们额外做判断,用起来简单高效,是最常用的一种创建执行环境的方式。

  1. createLocalEnvironment
    这个方法返回一个本地执行环境。可以在调用时传入一个参数,指定默认的并行度;如果不传入,则默认并行度就是本地的 CPU 核心数。
StreamExecutionEnvironment localEnv = StreamExecutionEnvironment.createLocalEnvironment();
  1. createRemoteEnvironment
    这个方法返回集群执行环境。需要在调用时指定 JobManager 的主机名和端口号,并指定要在集群中运行的 Jar 包。
StreamExecutionEnvironment remoteEnv = StreamExecutionEnvironment
.createRemoteEnvironment(
"host", // JobManager 主机名
1234, // JobManager 进程端口号(一般情况下是6123)
"path/to/jarFile.jar" // 提交给 JobManager 的 JAR 包
); 

在获取到程序执行环境后,我们还可以对执行环境进行灵活的设置。比如可以全局设置程序的并行度、禁用算子链,还可以定义程序的时间语义、配置容错机制。关于时间语义和容错机制,我们会在后续的章节介绍。

5.1.2 执行模式(Execution Mode)

  • 上节中我们获取到的执行环境,是一个 StreamExecutionEnvironment,顾名思义它应该是做流处理的。那对于批处理,又应该怎么获取执行环境呢?

  • 在之前的 Flink 版本中,批处理的执行环境与流处理类似,是调用类 ExecutionEnvironment的静态方法,返回它的对象:

// 批处理环境
ExecutionEnvironment batchEnv = ExecutionEnvironment.getExecutionEnvironment();
// 流处理环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
  • 基于 ExecutionEnvironment 读入数据创建的数据集合,就是 DataSet;对应的调用的一整套转换方法,就是 DataSet API。这些我们在第二章的批处理 word count 程序中已经有了基本了解。
  • 而从 1.12.0 版本起,Flink 实现了 API 上的流批统一。DataStream API 新增了一个重要特性:可以支持不同的“执行模式”(execution mode),通过简单的设置就可以让一段 Flink 程序在流处理和批处理之间切换。这样一来,DataSet API 也就没有存在的必要了。
  1. 流执行模式(STREAMING)
    这是 DataStream API 最经典的模式,一般用于需要持续实时处理的无界数据流。默认情况下,程序使用的就是 STREAMING 执行模式。
  2. 批执行模式(BATCH)
    专门用于批处理的执行模式, 这种模式下,Flink 处理作业的方式类似于 MapReduce 框架。对于不会持续计算的有界数据,我们用这种模式处理会更方便。
  3. 自动模式(AUTOMATIC)
    在这种模式下,将由程序根据输入数据源是否有界,来自动选择执行模式。

1. BATCH 模式的配置方法
由于 Flink 程序默认是 STREAMING 模式,我们这里重点介绍一下 BATCH 模式的配置。
主要有两种方式:
(1)通过命令行配置

bin/flink run -Dexecution.runtime-mode=BATCH …

在提交作业时,增加 execution.runtime-mode 参数,指定值为 BATCH。 (2)通过代码配置

StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.BATCH);

在代码中,直接基于执行环境调用 setRuntimeMode 方法,传入 BATCH 模式。

建议: 不要在代码中配置,而是使用命令行。这同设置并行度是类似的:在提交作业时指定参数可以更加灵活,同一段应用程序写好之后,既可以用于批处理也可以用于流处理。而在代码中硬编码(hard code)的方式可扩展性比较差,一般都不推荐

2. 什么时候选择 BATCH 模式

  • 我们知道,Flink 本身持有的就是流处理的世界观,即使是批量数据,也可以看作“有界流”来进行处理。所以 STREAMING 执行模式对于有界数据和无界数据都是有效的;而 BATCH模式仅能用于有界数据。
  • 看起来 BATCH 模式似乎被 STREAMING 模式全覆盖了,那还有必要存在吗?我们能不能所有情况下都用流处理模式呢?
  • 当然是可以的,但是这样有时不够高效。
  • 我们可以仔细回忆一下 word count 程序中,批处理和流处理输出的不同:在 STREAMING模式下,每来一条数据,就会输出一次结果(即使输入数据是有界的);而 BATCH 模式下,只有数据全部处理完之后,才会一次性输出结果。最终的结果两者是一致的,但是流处理模式会将更多的中间结果输出。在本来输入有界、只希望通过批处理得到最终的结果的场景下,STREAMING 模式的逐个输出结果就没有必要了。
  • 所以总结起来,一个简单的原则就是:用 BATCH 模式处理批量数据,用 STREAMING模式处理流式数据。因为数据有界的时候,直接输出结果会更加高效;而当数据无界的时候, 我们没得选择——只有 STREAMING 模式才能处理持续的数据流。
  • 当然,在后面的示例代码中,即使是有界的数据源,我们也会统一用 STREAMING 模式处理。这是因为我们的主要目标还是构建实时处理流数据的程序,有界数据源也只是我们用来测试的手段。

5.1.3 触发程序执行

  • 有了执行环境,我们就可以构建程序的处理流程了:基于环境读取数据源,进而进行各种转换操作,最后输出结果到外部系统。
  • 需要注意的是,写完输出(sink)操作并不代表程序已经结束。因为当 main()方法被调用时,其实只是定义了作业的每个执行操作,然后添加到数据流图中;这时并没有真正处理数据——因为数据可能还没来。Flink 是由事件驱动的,只有等到数据到来,才会触发真正的计算,这也被称为“延迟执行”或“懒执行”(lazy execution)。
  • 所以我们需要显式地调用执行环境的 execute()方法,来触发程序执行。execute()方法将一直等待作业完成,然后返回一个执行结果(JobExecutionResult)。
env.execute();

5.2 源算子(Source)

在这里插入图片描述

  • 创建环境之后,就可以构建数据处理的业务逻辑了,如图 5-2 所示,本节将主要讲解 Flink的源算子(Source)。想要处理数据,先得有数据,所以首要任务就是把数据读进来。
  • Flink 可以从各种来源获取数据,然后构建 DataStream 进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。
  • Flink 代码中通用的添加 source 的方式,是调用执行环境的 addSource()方法:
DataStream<String> stream = env.addSource(...);
  • 方法传入一个对象参数,需要实现 SourceFunction 接口;返回 DataStreamSource。这里的DataStreamSource 类继承自 SingleOutputStreamOperator 类,又进一步继承自DataStream。所以很明显,读取数据的 source 操作是一个算子,得到的是一个数据流(DataStream)。
  • 这里可能会有些麻烦:传入的参数是一个“源函数”(source function),需要实现SourceFunction 接口。这是何方神圣,又该怎么实现呢?
  • 自己去实现它显然不会是一件容易的事。好在 Flink 直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的 source function,通常情况下足以应对我们的实际需求。接下来我们就详细展开讲解。

5.2.1 准备工作

  • 为了更好地理解,我们先构建一个实际应用场景。比如网站的访问操作,可以抽象成一个三元组(用户名,用户访问的 urrl,用户访问 url 的时间戳),所以在这里,我们可以创建一个类 Event,将用户行为包装成它的一个对象。Event 包含了以下一些字段,如表 5-1 所示:
                            表 5-1 Event类字段设计
字段名 数据类型 说明
user String 用户名
url String 用户访问的 url
timestamp Long 用户访问 url 的时间戳

具体代码如下:

package online.chenyunde.chapter05;


import java.sql.Timestamp;

public class Event {
   
    public String user;
    public String url;
    public Long timestamp;

    public Event(){
   

    }

    public Event(String user, String url, Long timestamp) {
   
        this.user = user;
        this.url = url;
        this.timestamp = timestamp;
    }

    @Override
    public String toString() {
   
        return "Event{" +
                "user='" + user + '\'' +
                ", url='" + url + '\'' +
                ", timestamp=" + new Timestamp(timestamp) +
                '}';
    }
}

这里需要注意,我们定义的 Event,有这样几个特点:

  1. 类是公有(public)的
  2. 有一个无参的构造方法
  3. 所有属性都是公有(public)的
  4. 所有属性的类型都是可以序列化的
  • Flink 会把这样的类作为一种特殊的 POJO 数据类型来对待,方便数据的解析和序列化。另外我们在类中还重写了 toString 方法,主要是为了测试输出显示更清晰。关于 Flink 支持的数据类型,我们会在后面章节做详细说明。
  • 我们这里自定义的 Event POJO 类会在后面的代码中频繁使用,所以在后面的代码中碰到Event,把这里的 POJO 类导入就好了。

注:Java 编程比较好的实践是重写每一个类的 toString 方法,来自 Joshua Bloch 编写的《Effective Java》。

5.2.2 从集合中读取数据

最简单的读取数据的方式,就是在代码中直接创建一个 Java 集合,然后调用执行环境的fromCollection 方法进行读取。这相当于将数据临时存储到内存中,形成特殊的数据结构后,作为数据源使用,一般用于测试。

package online.chenyunde.chapter05;

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.ArrayList;

public class SourceTest {
   
    public static void main(String[] args) throws Exception {
   
        // 创建执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 1.从文件中读取数据
        //DataStreamSource<String> stream1 = env.readTextFile("input/clicks.txt");

        // 2.从集合中读取数据
        ArrayList<Integer> nums = new ArrayList<>();
        nums.add(2);
        nums.add(5);
        DataStreamSource<Integer> numStream = env.fromCollection(nums);

        ArrayList<Event> events = new ArrayList<>();
        events.add(new Event("Mary", "./home", 1000L));
        events.add(new Event("Bob", "./cart", 2000L));
        DataStreamSource<Event> stream2 = env.fromCollection(events);

        //stream1.print("1");
        numStream.print("nums");
        stream2.print("2");

        env.execute();
    }
}

我们也可以不构建集合,直接将元素列举出来,调用 fromElements 方法进行读取数据:

DataStreamSource<Event> stream2 = env.fromElements(
new Event("Mary", "./home", 1000L),
new Event("Bob", "./cart", 2000L)
);

5.2.3 从文件读取数据

真正的实际应用中,自然不会直接将数据写在代码中。通常情况下,我们会从存储介质中获取数据,一个比较常见的方式就是读取日志文件。这也是批处理中最常见的读取方式。

DataStream<String> stream = env.readTextFile("clicks.txt");

说明:

  1. 参数可以是目录,也可以是文件;
  2. 路径可以是相对路径,也可以是绝对路径;
  3. 相对路径是从系统属性 user.dir 获取路径: idea 下是 project 的根目录, standalone 模式下是集群节点根目录;
  4. 也可以从 hdfs 目录下读取, 使用路径 hdfs://…, 由于 Flink 没有提供 hadoop 相关依赖, 需要 pom 中添加相关依赖:
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-clie
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值