算法思想
这是一道质因数分解题,按照8年级下册的有关公式,我们可以通过质因数的分解来解决这道题。
对于第i种细胞,在经过t秒之后有St个细胞,而对于m1m2个试管,则要求St是m1m2的倍数。而要做到这一点,首先Si必须包含m1的所有质因数,否则Si不可能达到m1的倍数。
对m1分解质因数,拿Si来看是否拥有这些质因数。如果拥有,那么就选择该细胞进行计算时间。显然,时间应该不小于m1的所有质因子指数的最大值。
代码如下:
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
bool number[1500005];
int pre[15005],oper[15005],down[15005];
int main(){
int N,m1,m2;
cin >> N >> m1 >> m2;
if(m1==1){
cout << 0 << endl;
return 0;
}
memset(number,true,sizeof(number));
for(int i=2;i*i<=m1;i++){
if(number[i]){
for(int j=2*i;j*j<=m1;j+=i){
number[j]=false;
}
}
}
int k=0;
for(int i=2;i<=m1;i++){
if(number[i]){
pre[k++]=i;
}
}
int temp=m1;
k=0;
for(int i=0;pre[i]*pre[i]<=temp;i++){
if(temp%pre[i]==0){
oper[k]=pre[i];
while(temp%pre[i]==0){
down[k]++;
temp/=pre[i];
}
down[k]*=m2;
k++;
}
}
if(temp>1){
oper[k]=temp;
down[k++]=m2;
}
int ans=1<<30,si;
for(int i=1;i<=N;i++){
cin >> si;
int t=0;
for(int j=0;j<k;j++){
if(si%oper[j]){
t=1<<30;
break;
}
int p=0;
while(si%oper[j]==0){
p++;
si/=oper[j];
}
int ll=down[j]/p;
if(down[j]%p)ll++;
t=max(t,ll);
}
ans=min(ans,t);
}
if(ans==1<<30)cout << -1 << endl;
else cout << ans <<endl;
return 0;
}