Travelling by Stagecoach POJ No.2686

Source

POJ No.2686 Travelling bt Stagecoach

Problem Description

Once upon a time, there was a traveler.
He plans to travel using stagecoaches (horse wagons). His starting point and destination are fixed, but he cannot determine his route. Your job in this problem is to write a program which determines the route for him.
There are several cities in the country, and a road network connecting them. If there is a road between two cities, one can travel by a stagecoach from one of them to the other. A coach ticket is needed for a coach ride. The number of horses is specified in each of the tickets. Of course, with more horses, the coach runs faster.
At the starting point, the traveler has a number of coach tickets. By considering these tickets and the information on the road network, you should find the best possible route that takes him to the destination in the shortest time. The usage of coach tickets should be taken into account.
The following conditions are assumed.

  • A coach ride takes the traveler from one city to another directly connected by a road. In other words, on each arrival to a city, he must change the coach.
  • Only one ticket can be used for a coach ride between two cities directly connected by a road.
  • Each ticket can be used only once.
  • The time needed for a coach ride is the distance between two cities divided by the number of horses.
  • The time needed for the coach change should be ignored.

Input

The input consists of multiple datasets, each in the following format. The last dataset is followed by a line containing five zeros (separated by a space).
n m p a b
t1 t2 … tn
x1 y1 z1
x2 y2 z2

xp yp zp
Every input item in a dataset is a non-negative integer. If a line contains two or more input items, they are separated by a space.
n is the number of coach tickets. You can assume that the number of tickets is between 1 and 8. m is the number of cities in the network. You can assume that the number of cities is between 2 and 30. p is the number of roads between cities, which may be zero.
a is the city index of the starting city. b is the city index of the destination city. a is not equal to b. You can assume that all city indices in a dataset (including the above two) are between 1 and m.
The second line of a dataset gives the details of coach tickets. ti is the number of horses specified in the i-th coach ticket (1<=i<=n). You can assume that the number of horses is between 1 and 10.
The following p lines give the details of roads between cities. The i-th road connects two cities with city indices xi and yi, and has a distance zi (1<=i<=p). You can assume that the distance is between 1 and 100.
No two roads connect the same pair of cities. A road never connects a city with itself. Each road can be traveled in both directions.

Output

For each dataset in the input, one line should be output as specified below. An output line should not contain extra characters such as spaces.
If the traveler can reach the destination, the time needed for the best route (a route with the shortest time) should be printed. The answer should not have an error greater than 0.001. You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.
If the traveler cannot reach the destination, the string “Impossible” should be printed. One cannot reach the destination either when there are no routes leading to the destination, or when the number of tickets is not sufficient. Note that the first letter of “Impossible” is in uppercase, while the other letters are in lowercase.

Sample Input

3 4 3 1 4
3 1 2
1 2 10
2 3 30
3 4 20
2 4 4 2 1
3 1
2 3 3
1 3 3
4 1 2
4 2 5
2 4 3 4 1
5 5
1 2 10
2 3 10
3 4 10
1 2 0 1 2
1
8 5 10 1 5
2 7 1 8 4 5 6 3
1 2 5
2 3 4
3 4 7
4 5 3
1 3 25
2 4 23
3 5 22
1 4 45
2 5 51
1 5 99
0 0 0 0 0

Sample Output

30.000
3.667
Impossible
Impossible
2.856

Hint

Since the number of digits after the decimal point is not specified, the above result is not the only solution. For example, the following result is also acceptable.
30.0
3.66667
Impossible
Impossible
2.85595

思路

虽然可以把城市看作顶点,道路看作边建图,但是由于有车票相关的限制,无法直接使用Dijkstra算法求解,不过,这种情况下只需要把状态作为顶点,而把状态的转移看作边来见图就可以有效的避免这个问题。
让我们考虑一下"现在在城市v,此时还剩下的车票的集合为S",这样的状态,从这个状态出发使用一张车票i∈S移动到相邻的城市u,就相当于转移到了"在城市u,此时还剩下的车票为S/{i}"这个状态。把这个转移看作一条边,那么边上的花费是(v-u间道路的长度)/t。按照上面的方法所构成的图,就可以按照普通的dijkstra算法求解了。
集合S使用状态压缩的方法表示就可以了,剩余的车票的集合S随着移动元素的个数不断变小。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const double INF=1000000.0;
const int maxn=15;
const int maxm=35;
int n,m,a,b;
int t[maxn];
int d[maxm][maxm];//图的邻接矩阵表示(-1表示没有边)
double dp[1<<maxn][maxm];//dp[S][v]:=到达剩下的车票集合为S并且现在在城市v的状态所需要的最小花费 
void solve(){
	for(int i=0;i<1<<n;i++){
		fill(dp[i],dp[i]+m,INF);
	}
	dp[(1<<n)-1][a-1]=0;
	double res=INF;
	for(int S=(1<<n)-1;S>=0;S--){
		res=min(res,dp[S][b-1]);//到b的最短距离 
		for(int v=0;v<m;v++){
			for(int i=0;i<n;i++){
				if(S>>i&1){//如果剩下的车票里面还有i这张车票
					for(int u=0;u<m;u++){
						if(d[v][u]>=0){
							//S&~(1<<i)从集合S中去除i这个元素 
							dp[S&~(1<<i)][u]=min(dp[S&~(1<<i)][u],dp[S][v]+(double)d[v][u]/t[i]); 
						}
					} 
				}
			}
		}
	}
	if(res==INF)cout << "Impossible" << endl;
	else printf("%.3f\n",res);
} 
int main(){
	int p;
	while(scanf("%d%d%d%d%d",&n,&m,&p,&a,&b),n){
		for(int i=0;i<n;i++)cin >> t[i];
		int x,y,z;
		memset(d,-1,sizeof(d));//-1代表没有路径
		for(int i=0;i<p;i++){
			cin >> x >>y >>z;
			x--,y--;//输入是1序,而这里是0序
			d[x][y]=d[y][x]=z;
		}
		solve();
	}
	return 0;
}
发布了40 篇原创文章 · 获赞 13 · 访问量 553
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览