分治法解决最近点对问题

本文介绍了如何运用分治策略解决平面上N个点的最近点对问题。首先,通过暴力方法(O(N^2)复杂度)进行解析,然后详细阐述分治法的步骤,包括以横坐标中位数分割点集,处理边界情况,以及如何在子区域中寻找最短距离。最后,分析了算法的时间复杂度为O(n log n),并提供了源码链接。
摘要由CSDN通过智能技术生成

1.问题
对于平面上给定的N个点,找出N个点钟距离最近的两个点。

2.解析
1.暴力法:
每一个点都遍历平面上的所有点,计算出两点之间的距离,然后再找出所有数据中d最短的那两个点,复杂度为O(N^2)。思路简单,但是效率低下。

2.分治法:
将平面中的点以横坐标的中位数m作为分割线,将所有的点分割成两部分,并不断递归。
计算每块小区域中点的最短距离dX,并找出其中的最短距离d。由此完成了第一部分的问题,但如果最近对分布在两个区域中呢?我们需要另外讨论。
在这里插入图片描述
如该图片,由于之前找出了最小值d,只有在阴影区域的点才需要我们重新去判断,于是将阴影中的点做升序排序,在y坐标属于【y,y+d】的区域内找出最短距离对,距离为d3
返回min{d,d3}。

3.设计

if n=2 return d
if n=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值