着色问题(回溯法)

本文介绍了如何使用回溯法解决无向连通图的m着色问题,确保每条边的两个顶点着不同颜色。通过检查相邻顶点颜色避免冲突,当所有顶点着色成功时输出方案,否则返回‘NO’。算法复杂度为O(n^m),并提供了源码链接。
摘要由CSDN通过智能技术生成

1.问题
图的m着色问题。给定无向连通图G和m种颜色,用这些颜色给图的顶点着色,每个
顶点一种颜色。如果要求G的每条边的两个顶点着不同颜色。给出所有可能的着色方案;如果不存在,则回答“NO”。
2.解析
在填写每一个顶点的颜色时检查与相邻已填顶点的颜色是否相同。如果不同,则填上;如果相同(冲突),则另选一种;如果已没有颜色可供选择,则回溯到上一顶点。重复这一过程,直到所有顶点的颜色都已填上。
设计的思路就是设置一个检查函数,若两个节点相连并且颜色相同,则返回0,否则返回1。
若返回值为1则记录下颜色,若为0则返回上一顶点。
3.设计

1.检查
int Check(int k)    //检查第i个顶点的颜色是否满足条件 
{
   
	for(int i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值