【文本分类】BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

·阅读摘要:
  Bert是继Transformer之后的又一杰出的模型。Bert是一种预训练语言模型,是在GPT、Elmo、Transformer的基础上提出的。基于Bert的多个NLP领域任务都取得了非常大的提升。
·参考文献:
  [1] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  论文链接:https://arxiv.org/abs/1810.04805

[0] 阅读本论文最好了解前置知识:

  Transformer ⭐Bert就是基于Transformer提出的
  什么是预训练语言模型 ⭐Bert到底是怎么使用的

  了解Transformer模型,可以参考我的另外一篇博客:【文本分类】Attention Is All You Need


[1] 摘要

  提出了Bert模型,它不同于Elmo模型和GPT模型,Bert是对左右文(上下文)的一种双向提取训练,而且是对大数据集进行无监督学习。Bert训练好之后,其他人只需要根据自己的特定数据集,再微调一下,就能得到自己模型特有的词向量表示,而且这样做通常效果比较好。

【注一】:Elmo模型和GPT模型一个采用了RNN,一个采用了单向顺序来训练。Bert是使用Transformer为基础,然后看到了一个句子的双向顺序来训练的。
【注二】:什么是微调 一般情况下,训练一个模型是从头开始训练,花费时间较长,bert微调就是在预训练模型bert的基础上只需更新后面几层的参数,这相对于从头开始训练可以节省大量时间,甚至可以提高性能,通常情况下在模型的训练过程中,我们也会更新bert的参数,这样模型的性能会更好。bert是在通用语料上训练的,在你的特定领域,这些通用语料训练出的模型无法充分抽取出token的内在含义,所以需要用你的领域语料微调一下。


[2] 介绍

  预训练语言模型已被证明对提高NLP任务是有效的。

  在下游任务中,使用预训练语言模型有两种方式,基于特征基于微调

  作者认为标准语言模型是单向的,这限制了我们的模型训练。但是从两个方向结合上下文来表征句子是很重要的。

  Bert做无监督训练的思想如下图:

请添加图片描述
  核心点有3:
  · mask LM,类似于Word2Vec的CBOW一样,但是CBOW是有窗口大小限制的,而mask LM是在整个句子的规模上随机mask一些词。
  · 下一句预测,为了训练一个理解句子关系的模型,预训练了一个下一句预测的二元分类任务,这个任务可以从任何单语语料库中简单地归纳出来,预测输入BERT的两端文本是否为连续的文本。具体来说,在为每个训练前的例子选择句子 A 和 B 时,50% 的情况下 B 是真的在 A 后面的下一个句子,50% 的情况下是来自语料库的随机句子。
  · 采用12个Transformer的Encoder块进行双向提取句子特征。


[3] 相关工作

  · 无监督的基于特征的方法,以Elmo为代表。

  · 无监督的基于微调的方法,以GPT为代表。

  · 有些研究显示,在大型数据集上进行有监督的训练,之后迁移到语言推理和机器翻译任务上比较有效。CV领域也有类似研究。

【注三】:但是Bert是在大型数据集上进行无监督的训练,效果更好。

[4] Bert模型

  Bert主要有两个步骤:预训练(pre-training)微调(fine-tuning)

【注四】:原理就是CV领域的预训练使用流程

在这里插入图片描述
  · 预训练(pre-training):在一个大型数据集上进行无监督训练,预训练原理在“[2] 介绍”中已经阐述。

  · 微调(fine-tuning):利用预训练的结果给下游任务的参数作初始化,然后在下游任务的数据集上,再进行一定的训练,即可。

Bert模型的输入格式:

在这里插入图片描述
  如上图,每个词元的输入,都是有词的embedding、句子embedding、位置编码相加得到的。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

征途黯然.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值