【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……

·阅读摘要:
  提出了一种新的神经网络初始化方法:利用标签共现初始化最终隐藏层。
  [1] Improved Neural Network-based Multi-label Classification
with Better Initialization Leveraging Label Co-occurrence

【注一】:重要概念:
标签共现:一个文本会有多个标签,这种现象叫做标签共现。
标签共现模式:设一个多标签分类数据集有a-z共26个标签,那么a-z的任何一种大于2个标签的组合都可以成为是一个标签共现模式(pattern),形如{a,b}、{x,y,z}等等等等。

[0] 摘要

  提出了一种新的神经网络初始化方法:把最后一层隐含层中的一些神经元作为每个标签共现模式的专用神经元。这些专用的神经元权重被初始化,以连接到相应的共现标签,这些标签具有比其他标签更强的权重。

【注二】:最后一层隐含层,是指在最后用于分类的全连接层。

[1] 介绍

  在多标签文本分类中,一个文本可以与多个标签相关联。

  提出了一种新颖的神经网络初始化方法,将最终隐藏层中的一些神经元作为每个标签共现模式的专用神经元。这些专用的神经元被初始化,以连接到相应的共发生标签,其权重比其他的更强。

  通过一个真实的文档检索系统和公开的多标签数据集的实验,论文提出的方法简单直接地将标签共现信息嵌入到一个神经网络中,提高了NLQ分类的准确性。

[2] 相关工作

  介绍了论文使用的TextCNN模型(就是Kim发布的那一篇)。
在这里插入图片描述

  还介绍了三种损失函数:负对数似然、交叉熵、二元交叉熵,三种损失函数的效果论文也给出:
在这里插入图片描述

[3] 基于TextCNN提出改进方法

[3.1] 利用标签共现初始化最后一层网络权重

在这里插入图片描述
  如上图,一一介绍:

   1、上图的下方 就是一个全连接层,它的输入大小假设如图有7个,它的输出大小假设如图有5个(即是5个标签)。

   2、上图的上方 是这个全连接层的参数权重表,7*5=35个参数。假设出于某种原因、方法(这是个可以研究的点)我们找了几个比较突出的标签共现模式,体现在图中就是
{ λ 1 \lambda_1 λ1 λ 4 \lambda_4 λ4}、{ λ 2 \lambda_2 λ2 λ 4 \lambda_4 λ4 λ 5 \lambda_5 λ5}。

  对于以上2个模式,我们觉得它们在某种程度上很重要,我们希望开辟一个专用通道给它们使用。所以论文提出,初始化对应的权重参数,使它们在迭代时有优势。

  具体方法是,每一个模式对应全连接层左边的一个神经元,它的模式中有哪些标签,就设置对应标签位置上初始值为 w w w,其他位置为0。其他未被分配的神经元参数都是随机的。

[3.2] 专用神经元的权重设置

  介绍神经元初始值 w = U B w=UB w=UB的求法:
U B = 6 n h + n k UB=\frac{\sqrt{6}}{\sqrt{n_h+n_k}} UB=nh+nk 6
  其中 n h n_h nh为最终隐含层的个数, n k n_k nk为输出层(即类)中的个数。

  另外,论文根据训练数据中标签共现模式的频率来改变这个值。其背景思想是,频繁出现的标签共现模式比不太频繁的模式更重要。假设在训练数据f次中出现了特定的标签共现模式,那么另外一种 U B UB UB的算法为:
U B = 6 n h + n k ∗ f UB=\frac{\sqrt{6}}{\sqrt{n_h+n_k}}*f UB=nh+nk 6 f
U B = 6 n h + n k ∗ f UB=\frac{\sqrt{6}}{\sqrt{n_h+n_k}}*\sqrt{f} UB=nh+nk 6 f

  文中给出了各种初始值 w = U B w=UB w=UB算法的效果:
在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems. By generating additional training data through data augmentation, the performance of deep learning models can be greatly improved. This is particularly important in wireless communication systems, where the availability of large amounts of labeled data is often limited. Autoencoder-based data augmentation techniques can be used to generate synthetic data that is similar to the real-world data. This can help to address the problem of overfitting, where the deep learning model becomes too specialized to the training data and performs poorly on new, unseen data. By increasing the diversity of the training data, the deep learning model is better able to generalize to new data and improve its performance. Furthermore, autoencoder-based data augmentation can also be used to improve the robustness of deep learning models to channel variations and noise. By generating synthetic data that simulates different channel conditions and noise levels, the deep learning model can be trained to be more resilient to these factors. This can result in improved performance in real-world wireless communication scenarios, where channel conditions and noise levels can vary widely. In conclusion, autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems by improving the performance and robustness of deep learning models.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

征途黯然.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值