学习于大佬文章 FART:ART环境下基于主动调用的自动化脱壳方案 ps:大佬准备完善之后开源。
FART大佬写的有点不适合我这种萌新小白,于是网上搜了各种知识点补充一下。
另外分享一篇关于加固的文章 安卓的"壳"
需要了解的知识
1、什么是ART
ART会使系统在安装应用的时候会进行一次预编译,在安装应用程序时会先将代码转换为机器语言存储在本地,这样在运行程序时就不会每次都进行一次编译了,执行效率也大大提升
2、startActivity
总的来说Activity父类是Context ,Context 是个抽象类,ContextImpl 是Context 具体实现类.ContextWrapper也是继承于Context ,ContextWrapper使用代理方式调用ContextImpl。
3、startService
ActivityManagerService是Android的Java framework的服务框架最重要的服务之一。对于Andorid的Activity、Service、Broadcast、ContentProvider四剑客的管理,包含其生命周期都是通过ActivityManagerService来完成的
4、Binder 原理剖析
Binder 是一种进程间通信机制,基于开源的 OpenBinder 实现;OpenBinder 起初由 Be Inc. 开发,后由 Plam Inc. 接手。从字面上来解释 Binder 有胶水、粘合剂的意思,顾名思义就是粘和不同的进程,使之实现通信
5、Socket通信原理
Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议
6、SystemServer进程的创建流程 Zygote进程
这个知识点比较多,不在阐述,详情看大佬们的文章。
7、apk加固原理
自己写的,简单的加固原理及操作都有
8、ActivityThread.main()
进入app世界的大门
一、App启动流程
即:
1、发起进程:startActivitu/startService等方法的调用
2、system_server进程的调用
3、通过Zygote进程进入ActivityThread.main()
4、app启动
https://www.jianshu.com/p/a1f40b39b3de
http://gityuan.com/2016/03/26/app-process-create/
https://www.jianshu.com/p/6037f6fda285
对ActivityThread.main()函数代码的简单分析
对于ActivityThread这个类,其中的sCurrentActivityThread静态变量用于全局保存创建的ActivityThread实例,同时还提供了public static ActivityThread currentActivityThread()静态函数用于获取当前虚拟机创建的ActivityThread实例。ActivityThread.main()函数是java中的入口main函数,这里会启动主消息循环,并创建ActivityThread实例,之后调用thread.attach(false)完成一系列初始化准备工作,并完成全局静态变量sCurrentActivityThread的初始化。之后主线程进入消息循环,等待接收来自系统的消息。当收到系统发送来的bindapplication的进程间调用时,调用函数handlebindapplication来处理该请求
在 handleBindApplication函数中第一次进入了app的代码世界,该函数功能是启动一个application,并把系统收集的apk组件等相关信息绑定到application里,在创建完application对象后,接着调用了application的attachBaseContext方法,之后调用了application的onCreate函数。由此可以发现,app的Application类中的attachBaseContext和onCreate这两个函数是最先获取执行权进行代码执行的。这也是为什么各家的加固工具的主要逻辑都是通过替换app入口Application,并自实现这两个函数,在这两个函数中进行代码的脱壳以及执行权交付的原因。
二、APP加壳原理以及运行流程
在第一节的App启动流程中我们最终可以得出结论,app最先获得执行权限的是app中声明的Application类中的attachBaseContext和onCreate函数。因此,壳要想完成应用中加固代码的解密以及应用执行权的交付就都是在这两个函数上做文章。下面这张图大致讲了加壳应用的运行流程。
运行的时候,则只需要动态加载即可,具体请看 https://blog.csdn.net/qq_43593334/article/details/94379430
当壳在函数attachBaseContext和onCreate中执行完加密的dex文件的解密后,通过自定义的Classloader在内存中加载解密后的dex文件。为了解决后续应用在加载执行解密后的dex文件中的Class和Method的问题,接下来就是通过利用java的反射修复一系列的变量。其中最为重要的一个变量就是应用运行中的Classloader,只有Classloader被修正后,应用才能够正常的加载并调用dex中的类和方法,否则的话由于Classloader的双亲委派机制,最终会报ClassNotFound异常,应用崩溃退出,这是加固厂商不愿意看到的。由此可见Classloader是一个至关重要的变量,所有的应用中加载的dex文件最终都在应用的Classloader中。
因此,只要获取到加固应用最终通过反射设置后的Classloader,我们就可以通过一系列反射最终获取到当前应用所加载的解密后的内存中的Dex文件。
随着加壳技术的发展,为了对抗dex整体加固更易于内存dump来得到原始dex的问题,各加固厂商又结合hook技术,通过hook dex文件中类和方法加载执行过程中的关键流程,来实现在函数执行前才进行解密操作的指令抽取的解决方案。此时,就算是对内存中的dex整体进行了dump,但是由于其方法的最为重要的函数体中的指令被加密,导致无法对相关的函数进行脱壳。由此,Fupk3诞生了,该脱壳工具通过欺骗壳而主动调用dex中的各个函数,完成调用流程,让壳主动解密对应method的指令区域,从而完成对指令抽取型壳的脱壳。
三、现有ART环境下自动化脱壳工具及优缺点
针对虚拟机运行过程中类的加载执行流程进行修改从而完成脱壳的集大成者算是dexhunter。dexhunter分别实现了dalvik和art环境下的加固app的脱壳。然而,当前针对dexhunter的脱壳原理来对抗dexhunter的技术也不断被应用,比如添加无效类并在这些类的初始化函数加入强制退出相关的代码以及检测dexhunter的配置文件等。其次,当前ART环境下的脱壳技术还有基于dex2oat编译生成oat过程的内存中的dex的dump技术,该方法依然是整体型dump,无法应对指令抽取型加固,同时,当前一些壳对于动态加载dex的流程进行了hook,这些dex也不会走dex2oat流程;以及基于dex加载过程中内存中的DexFile结构体的dump技术。例如,在ART下通过hook OpenMem函数来实现在壳进行加载DexFile时对内存中的dex的dump的脱壳技术,以及在2017年的DEF CON 25 黑客大会中,Avi Bashan 和 SlavaMakkaveev 提出的通过修改DexFile的构造函数DexFile::DexFile(),以及OpenAndReadMagic()函数来实现对加壳应用的内存中的dex的dump来脱壳技术。上面这些脱壳技术均无法实现对指令抽取型壳的完全脱壳。与此同时,F8left实现并开源了Dalvik环境下的基于主动调用的脱壳技术,完美实现了对抗指令抽取型壳的解决方案。但是随着Android的升级,Dalvik虚拟机已经逐渐淡出了视野,当前的很多应用已经不支持安装在4.4以下系统中,这就导致fupk3也即将走向末路。相信F8left大佬也早已实现了ART环境下的基于主动调用的脱壳技术,但是却由于某些原因并未开源。本人在前人基础上,提出一种ART环境下的基于主动调用的的脱壳技术解决方案,并最后实现该解决方案,这里先分别提供arm模拟器、x86模拟器以及nexus5的脱壳镜像供广大安全研究人员测试使用(建议手头有nexus5手机的用户选择使用nexus5镜像,虚拟机下使用较慢),并提供意见和建议,也欢迎大家共同参与到我的工作中,对Fart进行进一步的完善。在后续待更完善后会将该项目开源。
四、FART脱壳原理以及实现
FART脱壳的步骤主要分为三步:
1.内存中DexFile结构体完整dex的dump
2.主动调用类中的每一个方法,并实现对应CodeItem的dump
3.通过主动调用dump下来的方法的CodeItem进行dex中被抽取的方法的修复
下面分别对每一步的实现原理进行介绍。
- 内存中DexFile结构体完整dex的dump
该步同Avi Bashan 和 SlavaMakkaveev 在DefCon 2017上提出的通过修改DexFile的构造函数DexFile::DexFile(),以及OpenAndReadMagic()函数来实现对加壳应用的内存中的dex的dump来脱壳的原理类似。不同之处在于Avi Bashan 和 SlavaMakkaveev是通过修改系统中DexFile中提供的相关函数来实现dump,实际上壳完全可以自实现一套Dex文件的内存加载机制从而绕过这种dump方法。本文提出的是通过选择合适的时机点获取到应用解密后的dex文件最终依附的Classloader,进而通过java的反射机制最终获取到对应的DexFile的结构体,并完成dex的dump。接下来主要介绍具体实现细节。
首先,对于获取Classloader的时机点的选择。在第一节的App启动流程以及第三节中APP加壳原理和执行流程的介绍中,可以看到,APP中的Application类中的attachBaseContext和onCreate函数是app中最先执行的方法。壳都是通过替换APP的Application类并自己实现这两个函数,并在这两个函数中实现dex的解密加载,hook系统中Class和method加载执行流程中的关键函数,最后通过反射完成关键变量如最终的Classloader,Application等的替换从而完成执行权的交付。因此,我们可以选在任意一个在Application的onCreate函数执行之后才开始被调用的任意一个函数中。众所周知,对于一个正常的应用来说,最终都要由一个个的Activity来展示应用的界面并和用户完成交互,那么我们就可以选择在ActivityThread中的performLaunchActivity函数作为时机,来获取最终的应用的Classloader。选择该函数还有一个好处在于该函数和应用的最终的application同在ActivityThread类中,可以很方便获取到该类的成员。
private Activity performLaunchActivity(ActivityClientRecord r, Intent customIntent) {
......
Activity activity = null;
try {
java.lang.ClassLoader cl = r.packageInfo.getClassLoader();
//下面通过application的getClassLoader()获取最终的Classloader,并开启线程,在新线程中完成内存中的dex的dump以及主动调用过程,由于该过程相对耗时,为了防止应用出现ANR,从而开启新线程,在新线程中进行,主要的工作都在getDexFilesByClassLoader_23
//addstart
packagename=r.packageInfo.getPackageName();
//mInitialApplication
//final java.lang.ClassLoader finalcl=cl
if(mInitialApplication!=null){
final java.lang.ClassLoader finalcl=mInitialApplication.getClassLoader();
new Thread(new Runnable() {
@Override
public void run() {
getDexFilesByClassLoader_23(finalcl);
}
}).start();
}
//addend
}
}
getDexFilesByClassLoader_23()函数的主要流程就是通过一系列的反射,最终获取到当前Classloader中的mCookie,即Native层中的DexFile。为了在C/C++中完成对dex的dump操作。这里我们在framework层的DexFile类中添加两个Native函数供调用:
在文件libcore/dalvik/src/main/java/dalvik/system/DexFile.java中
private static native void dumpDexFile(String dexfilepath,Object cookie);
private static native void dumpMethodCode(String eachclassname, String methodname,Object cookie, Object method);
这两个函数分别用于完成内存中dex的dump以及构造主动调用链,完成方法体的dump
在对应的c++文件中添加这两个Native函数的实现并完成注册:
art/runtime/native/dalvik_system_DexFile.cc文件中
static void DexFile_dumpDexFile(JNIEnv* env, jclass, jstring filepath,jobject cookie) {
std::unique_ptr<std::vector<const DexFile*>> dex_files = ConvertJavaArrayToNative(env, cookie);
if (dex_files.get() == nullptr) {
DCHECK(env->ExceptionCheck());
return;
}
int dexnum=0;
char dexfilepath[1000];
for (auto& dex_file : *dex_files) {
const uint8_t* begin_=dex_file->getbegin(); // Start of data.
size_t size_=dex_file->getsize(); // Length of data.
int dexfilesize=(int)size_;
const char *filepathcstr = env->GetStringUTFChars(filepath, nullptr);
memset(dexfilepath,0,1000);
sprintf(dexfilepath,"%s_%d_%d",filepathcstr,dexfilesize,dexnum);
dexnum++;
//由于部分壳通过hook libc中的关键文件读写函数来防止dump,这里直接使用系统调用完成dex文件的dump
int fp=open(dexfilepath,O_CREAT|O_APPEND|O_RDWR,0666);
write(fp,(void*)begin_,size_);
fsync(fp);
close(fp);
}
}
上面实现了对Classloader中加载的dex的dump,那么如何实现对类中函数的主动调用来实现函数粒度的脱壳呢?下面开始介绍主动调用的设计
- 类函数的主动调用设计实现
对类函数的主动调用链的构造我们或许可以从JNI提供的相关函数的源码可以得出参考。JNI提供了一系列java层函数与Native层函数交互的接口。当需要在Native层中的c/c++函数中调用位于java层的函数时,需要先获取到该函数的jmethodid然后再通过诸如jni中提供的call开头的一系列函数来完成对java层中函数的调用。我们以jni中的CallObjectMethod函数为例,进行分析。下面开始源码分析:
static jobject CallObjectMethod(JNIEnv* env, jobject obj, jmethodID mid, ...) {
va_list ap;
va_start(ap, mid);
CHECK_NON_NULL_ARGUMENT(obj);
CHECK_NON_NULL_ARGUMENT(mid);
ScopedObjectAccess soa(env);
JValue result(InvokeVirtualOrInterfaceWithVarArgs(soa, obj, mid, ap));
va_end(ap);
return soa.AddLocalReference<jobject>(result.GetL());
}
该函数中通过(InvokeVirtualOrInterfaceWithVarArgs(soa, obj, mid, ap)函数来完成调用,下面看该函数内容:
该函数首先对jmethodid进行了转换,转换成ArtMethod对象指针,进而通过函数InvokeWithArgArray完成调用,下面再看InvokeWithArgArray函数内容
JValue InvokeVirtualOrInterfaceWithVarArgs(const ScopedObjectAccessAlreadyRunnable& soa,
jobject obj, jmethodID mid, va_list args) {
......
ArtMethod* method = FindVirtualMethod(receiver, soa.DecodeMethod(mid));
......
InvokeWithArgArray(soa, method, &arg_array, &result, shorty);
.....
}
下面看 InvokeWithArgArray函数:
static void InvokeWithArgArray(const ScopedObjectAccessAlreadyRunnable& soa,
ArtMethod* method, ArgArray* arg_array, JValue* result,
const char* shorty)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t* args = arg_array->GetArray();
if (UNLIKELY(soa.Env()->check_jni)) {
CheckMethodArguments(soa.Vm(), method->GetInterfaceMethodIfProxy(sizeof(void*)), args);
}
method->Invoke(soa.Self(), args, arg_array->GetNumBytes(), result, shorty);
}
该函数最终通过调用ArtMethod类中的Invoke函数完成对java层中的函数的调用。由此,我们可以看到ArtMethod类中的Invoke方法在jni中扮演着至关重要的地位。于是,我们可以构造出自己的invoke函数,在该函数中再调用ArtMethod的Invoke方法从而完成主动调用,并在ArtMethod的Invoke函数中首先进行判断,当发现是我们自己的主动调用时就进行方法体的dump并直接返回,从而完成对壳的欺骗,达到方法体的dump。下面开始代码部分。在libcore/dalvik/src/main/java/dalvik/system/DexFile.java的另一个Native函数DexFile_dumpMethodCode中
static void DexFile_dumpMethodCode(JNIEnv* env, jclass, jstring eachclassname, jstring methodname,jobject cookie,jobject method) {
ScopedFastNativeObjectAccess soa(env);
ArtMethod* called_method = ArtMethod::FromReflectedMethod(soa, method);
method ->myfartInvoke(method );
return;
}
可以看到代码非常简洁,首先是对Java层传来的Method结构体进行了类型转换,转成Native层的ArtMethod对象,接下来就是调用ArtMethod类中myfartInvoke实现虚拟调用,并完成方法体的dump。下面看ArtMethod.cc中添加的函数myfartInvoke的实现主动调用的代码部分:
void ArtMethod::myfartInvoke(ArtMethod* artmethod)
{ JValue *result=nullptr;
Thread *self=nullptr;
uint32_t temp=6;
uint32_t* args=&temp;
uint32_t args_size=6;
artmethod->Invoke(self, args, args_size, result, "fart");
}
这里代码依然很简洁,只是对ArtMethod类中的Invoke的一个调用包装,不同的是在参数方面,我们直接给Thread*传递了一个nullptr,作为对主动调用的标识。下面看ArtMethod类中的Invoke函数:
void ArtMethod::Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result,
const char* shorty) {
// unsigned int tempresult=(unsigned int)self;
if (self== nullptr) {
LOG(INFO) <<"art_method.cc::Invoke is invoked by myfartinvoke";
dumpArtMethod(this);
return;
}
该函数只是在最开头添加了对Thread*参数的判断,当发现该参数为nullptr时,即表示是我们自己构造的主动调用链到达,则此时调用dumpArtMethod()函数完成对该ArtMethod的CodeItem的dump,这部分代码和fupk3一样直接采用dexhunter里的,这里不再赘述。到这里,我们就完成了内存中DexFile结构体中的dex的整体dump以及主动调用完成对每一个类中的函数体的dump,下面就是修复被抽取的函数部分。
3、 抽取类函数的修复
壳在完成对内存中加载的dex的解密后,该dex的索引区即stringid,typeid,methodid,classdef和对应的data区中的string列表并未加密。而对于classdef中类函数的CodeItem部分可能被加密存储或者直接指向内存中另一块区域。这里我们只需要使用dump下来的method的CodeItem来解析对应的被抽取的方法即可,这里我提供了一个用python实现的修复脚本。
具体请看大佬的原帖