这次我们来看看n皇后问题,这又是典型的dfs例题。
- 请输出字典序最小的x皇后问题对应的排列。
(x<=10)
输入
一个数x
输出
包括一行,输出1~x的一个排列,满足x皇后问题的要求。
样例输入
8
样例输出
1 5 8 6 3 7 2 4
八皇后问题的分解一共有两步:
生成问题的所有候选解空间
过滤掉那些不满足要求的
细化这两步,需要认识到下面两点:
八皇后所有候选解空间是: [1,2,3,4,5,6,7,8] 这个集合中元素的全排列
(这个全排列不仅列出了候选解,并且还自动规避掉了皇后在横、竖方向上攻击的问题)
接下来八皇后相互攻击的问题就是:任意两个皇后是否在一条对角线上,即两个皇后所在直线的斜率绝对值是否为1 。
清楚了上述两点后,代码就变得异常清晰、简单、直接了,要做的工作就是:生成 [1,2,3,4,5,6,7,8] 的全排列
判断斜率,并且过滤掉那些有冲突的解。
代码如下:
#include<bits/stdc++.h>
using namespace std;
int n,a[15],b[15],ans;
void output(){
for(int i=1;i<=n-1;i++){
for(int j=i+1;j<=n;j++){
if(abs(i-j)==abs(a[i]-a[j])){
return ;
}
}
}
if(ans>0){
return ;
}
ans++;
for(int i=1;i<=n;i++){
cout<<a[i]<<" ";
}
}
void dfs(int num){
if(ans>0){
return ;
}
if(num>n){
output();
return ;
}
for(int i=1;i<=n;i++){
if(b[i]==0){
a[num]=i;
b[i]=i;
dfs(num+1);
a[num]=0;
b[i]=0;
}
}
}
int main(){
cin>>n;
dfs(1);
return 0;
}
有一种说法,即用全排列解决x皇后问题是非常好的思路,那么为什么不直接用全排列函数来解决呢,我查了一下,全网没有直接用全排列函数来解决x皇后类问题的代码,于是在几次尝试后,我终于成功码出了用全排列函数直接秒杀x皇后类问题的代码,具体代码如下:
#include<bits/stdc++.h>
using namespace std;
int a[15];
int main(){
int n,p;
cin>>n;
for(int i=1;i<=n;i++){
a[i]=i;
}
do{
p=1;
for(int i=1;i<=n-1;i++){
for(int j=i+1;j<=n;j++){
if(abs(a[i]-a[j])==abs(i-j)){
p=0;
}
}
}
if(p==1){
for(int i=1;i<=n;i++){
cout<<a[i]<<" ";
}
break;
}
}while(next_permutation(a+1,a+n+1));
return 0;
}