中阶算法---dfs+回溯(4)

这次我们来看看n皇后问题,这又是典型的dfs例题。

  • 请输出字典序最小的x皇后问题对应的排列。
    (x<=10)
    输入
    一个数x
    输出
    包括一行,输出1~x的一个排列,满足x皇后问题的要求。
    样例输入
    8
    样例输出
    1 5 8 6 3 7 2 4

八皇后问题的分解一共有两步:
生成问题的所有候选解空间
过滤掉那些不满足要求的
细化这两步,需要认识到下面两点:
八皇后所有候选解空间是: [1,2,3,4,5,6,7,8] 这个集合中元素的全排列
(这个全排列不仅列出了候选解,并且还自动规避掉了皇后在横、竖方向上攻击的问题)
接下来八皇后相互攻击的问题就是:任意两个皇后是否在一条对角线上,即两个皇后所在直线的斜率绝对值是否为1 。
清楚了上述两点后,代码就变得异常清晰、简单、直接了,要做的工作就是:生成 [1,2,3,4,5,6,7,8] 的全排列
判断斜率,并且过滤掉那些有冲突的解。
代码如下:

#include<bits/stdc++.h>
using namespace std;
int n,a[15],b[15],ans;
void output(){
    for(int i=1;i<=n-1;i++){
        for(int j=i+1;j<=n;j++){
            if(abs(i-j)==abs(a[i]-a[j])){
                return ;
            }
        }
    }
    if(ans>0){
        return ;
    }
    ans++;
    for(int i=1;i<=n;i++){
        cout<<a[i]<<" ";
    }
}
void dfs(int num){
    if(ans>0){
        return ;
    }
    if(num>n){
        output();
        return ;
    }
    for(int i=1;i<=n;i++){
        if(b[i]==0){
            a[num]=i;
            b[i]=i;
            dfs(num+1);
            a[num]=0;
            b[i]=0;
        }
    }
}
int main(){
    cin>>n;
    dfs(1);
    return 0;
}

有一种说法,即用全排列解决x皇后问题是非常好的思路,那么为什么不直接用全排列函数来解决呢,我查了一下,全网没有直接用全排列函数来解决x皇后类问题的代码,于是在几次尝试后,我终于成功码出了用全排列函数直接秒杀x皇后类问题的代码,具体代码如下:

#include<bits/stdc++.h>
using namespace std;
int a[15];
int main(){
    int n,p;
    cin>>n;
    for(int i=1;i<=n;i++){
        a[i]=i;
    }
    do{
        p=1;
        for(int i=1;i<=n-1;i++){
            for(int j=i+1;j<=n;j++){
                if(abs(a[i]-a[j])==abs(i-j)){
                    p=0;
                }
            }
        }
        if(p==1){
            for(int i=1;i<=n;i++){
                cout<<a[i]<<" ";
            }
            break;
        }
    }while(next_permutation(a+1,a+n+1));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值