代码随想录算法训练营第十天| 二叉树理论基础篇、 二叉树的递归遍历、 二叉树的迭代遍历、 二叉树的统一迭代法

写在前面

最近看上去我偷懒了,但其实还真的不是,主要是事太太太多了。中期答辩、项目问题整整做到现在,但现在挤点时间把以前的补上来吧

二叉树理论基础篇

二叉树的种类

满二叉树

什么叫满二叉树呢,就是所有的使用过的层的结点都用满就是满二叉树
在这里插入图片描述

完全二叉树

  • 最底层可以不用填满
  • 左边的节点必须填满
  • 右边的可以不填

在这里插入图片描述

二叉搜索树

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值
  • 它的左、右子树也分别为二叉排序树

在这里插入图片描述

平衡二叉搜索树

  • 它是一棵空树或它的左右两个子树的高度差的绝对值不超过1
  • 左右两个子树都是一棵平衡二叉树。
  • 在这里插入图片描述

二叉树的存储方式

链式储存

在这里插入图片描述
指针

顺序存储

在这里插入图片描述
数组
在这里插入图片描述
如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

二叉树的遍历方式

深度优先遍历

先往深走,遇到叶子节点再往回走。

  • 前序遍历(递归法,迭代法)
  • 中序遍历(递归法,迭代法)
  • 后序遍历(递归法,迭代法)

这里前中后,其实指的就是中间节点的遍历顺序
前序遍历: 左右 5 4 1 2 6 7 8
中序遍历:1 4 2 5 7 6 8
后序遍历: 左右 1 2 4 7 8 6 5
在这里插入图片描述

广度优先遍历

一层一层的去遍历。

  • 层次遍历(迭代法)

二叉树的定义

指针定义法

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

二叉树的递归遍历

前序遍历

class Solution
{
public:
    void pretraversal(TreeNode *cur, vector<int> &vec)
    {
        if (cur == NULL)
            return;
        vec.push_back(cur->val);       // 中
        pretraversal(cur->left, vec);  // 左
        pretraversal(cur->right, vec); // 右
    } // 前序遍历

    vector<int> preorderTraversal(TreeNode *root)
    {
        vector<int> result;
        pretraversal(root, result);
        return result;
    }
};

中序遍历

class Solution {
public:
    void midtraversal(TreeNode *cur, vector<int> &vec)
    {
        if (cur == NULL)
            return;
        midtraversal(cur->left, vec);  // 左
        vec.push_back(cur->val);       // 中
        midtraversal(cur->right, vec); // 右
    } // 中序遍历

    vector<int> inorderTraversal(TreeNode *root)
    {
        vector<int> result;
        midtraversal(root, result);
        return result;
    }
};

后序遍历

class Solution
{
public:
    void postTraversal(TreeNode *cur, vector<int> &vec)
    {
        if (cur == NULL)
            return;
        postTraversal(cur->left, vec);  // 左
        postTraversal(cur->right, vec); // 右
        vec.push_back(cur->val);        // 中
    } // 后序遍历

    vector<int> postorderTraversal(TreeNode *root)
    {
        vector<int> result;
        postTraversal(root, result);
        return result;
    }
};

二叉树的迭代遍历

前序遍历

class Solution
{
public:
    vector<int> preorderTraversal(TreeNode *root)
    {
        stack<TreeNode *> st;
        vector<int> result;
        if (root == NULL)
            return result;
        st.push(root);
        while (!st.empty())
        {
            TreeNode *node = st.top();
            st.pop();
            result.push_back(node->val);
            if (node->right)
                st.push(node->right);
            if (node->left)
                st.push(node->left);
        }
        return result;
    }
};

中序遍历

class Solution
{
public:
    vector<int> inorderTraversal(TreeNode *root)
    {
        vector<int> result;
        stack<TreeNode *> st;
        TreeNode *cur = root;
        while (cur != NULL || !st.empty())
        {
            if (cur != NULL)
            {
                st.push(cur);
                cur = cur->left;
            }
            else
            {
                cur = st.top();
                st.pop();
                result.push_back(cur->val);
                cur = cur->right;
            }
        }
        return result;
    }

后序遍历

class Solution
{
public:
    vector<int> postorderTraversal(TreeNode *root)
    {
        stack<TreeNode *> st;
        vector<int> result;
        if (root == NULL)
            return result;
        st.push(root);
        while (!st.empty())
        {
            TreeNode *node = st.top();
            st.pop();
            result.push_back(node->val);
            if (node->left)
                st.push(node->left); 
            if (node->right)
                st.push(node->right); 
        }
        reverse(result.begin(), result.end()); 
        return result;
    }
};

统一迭代法

说这话,这个没看懂,周末统一看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值