poj1141区间dp+细节处理

题目地址
题意:给你一个只包含’()‘和’[]'的字符串,返回把他变成正则序列的最小长度。空的字符串也是。
这道题用区间dp做比较容易,但是有需要注意的地方。我们把这道题转化成把这个序列变成正则序列的最小处理次数,处理次数最小,长度当然也就最小。
所以我们创建一个dp[i][j]表示把区间[i,j]变成正则序列的最小处理次数,那么转移公式就可以写成:
ch[i] == ch[j]的时候dp[i][j] = dp[i + 1][j - 1],这时不需要增加次数。
当ch[i] != ch[j]时,dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j])(k ->[i,j - 1])
这里就需要注意了,当ch[i] = ch[j]这种情况,dp[i + 1][j - 1]不一定就是最小值,比如:()]]](),这里的最小次数应该是3,但是如果用dp[0][6] = dp[1][5]的话,答案就变成了5,明显不对,所以当ch[i] != ch[j]这种情况应该在ch[i] = ch[j]的时候也列举一遍,最后看到很多说被输入空行和最后要加空行的坑,我都吸取了就一次过了,只是注意输入要用gets。
上面的解决了以后就是输出的问题,这里我们用一个数组s[i][j]表示了区间[i,j]的断开点,我们在求dp得时候可以求得,当s[i][j] = -1的时候,就是当前位置有匹配,那就输出i位置,然后输出[i + 1, j - 1]位置的,再输出j位置的,如果当前位置没有匹配,就是直接输出[i, s[i][j]][s[i,j],j]的字符。
最后附上ac代码:

#include <iostream>
#include <cstring>

using namespace std;

const int maxn = 105;
const int INF = 0x3f3f3f3f;
char ch[maxn];
int dp[maxn][maxn], s[maxn][maxn];

bool match(int i, int j) {
    return (ch[i] == '(' && ch[j] == ')') || (ch[i] == '[' && ch[j] == ']');
}

void print(int i, int j) {
    if (i > j) return;
    if (i == j) {
        if (ch[i] == '(' || ch[i] == ')') printf("()");
        if (ch[i] == '[' || ch[i] == ']') printf("[]");
    } else if (s[i][j] == - 1) {
        printf("%c", ch[i]);
        print(i + 1, j - 1);
        printf("%c", ch[j]);
    } else {
        print(i, s[i][j]);
        print(s[i][j] + 1, j);
    }
}

int main()
{
    gets(ch);
    int n = strlen(ch);
    memset(s, -1, sizeof(s));
    for (int i = 0; i < n; i++) dp[i][i] = 1;
    for (int len = 2; len <= n; len++) {
        for (int i = 0; i + len - 1 < n; i++) {
            int j = i + len - 1;
            dp[i][j] = INF;
            if (match(i,j)) dp[i][j] = dp[i + 1][j - 1];
            for (int k = i; k < j; k++) {
                if (dp[i][j] > dp[i][k] + dp[k + 1][j]) {
                    dp[i][j] = dp[i][k] + dp[k + 1][j];
                    s[i][j] = k;
                }
            }

        }
    }
    print(0,n - 1);
    printf("\n");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值