题目地址
题意:给你一个只包含’()‘和’[]'的字符串,返回把他变成正则序列的最小长度。空的字符串也是。
这道题用区间dp做比较容易,但是有需要注意的地方。我们把这道题转化成把这个序列变成正则序列的最小处理次数,处理次数最小,长度当然也就最小。
所以我们创建一个dp[i][j]表示把区间[i,j]变成正则序列的最小处理次数,那么转移公式就可以写成:
当ch[i] == ch[j]的时候dp[i][j] = dp[i + 1][j - 1],这时不需要增加次数。
是当ch[i] != ch[j]时,dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j])(k ->[i,j - 1])
这里就需要注意了,当ch[i] = ch[j]
这种情况,dp[i + 1][j - 1]
不一定就是最小值,比如:()]]]()
,这里的最小次数应该是3,但是如果用dp[0][6] = dp[1][5]
的话,答案就变成了5,明显不对,所以当ch[i] != ch[j]
这种情况应该在ch[i] = ch[j]
的时候也列举一遍,最后看到很多说被输入空行和最后要加空行的坑,我都吸取了就一次过了,只是注意输入要用gets。
上面的解决了以后就是输出的问题,这里我们用一个数组s[i][j]
表示了区间[i,j]
的断开点,我们在求dp得时候可以求得,当s[i][j] = -1
的时候,就是当前位置有匹配,那就输出i位置,然后输出[i + 1, j - 1]
位置的,再输出j位置的,如果当前位置没有匹配,就是直接输出[i, s[i][j]]
和[s[i,j],j]
的字符。
最后附上ac代码:
#include <iostream>
#include <cstring>
using namespace std;
const int maxn = 105;
const int INF = 0x3f3f3f3f;
char ch[maxn];
int dp[maxn][maxn], s[maxn][maxn];
bool match(int i, int j) {
return (ch[i] == '(' && ch[j] == ')') || (ch[i] == '[' && ch[j] == ']');
}
void print(int i, int j) {
if (i > j) return;
if (i == j) {
if (ch[i] == '(' || ch[i] == ')') printf("()");
if (ch[i] == '[' || ch[i] == ']') printf("[]");
} else if (s[i][j] == - 1) {
printf("%c", ch[i]);
print(i + 1, j - 1);
printf("%c", ch[j]);
} else {
print(i, s[i][j]);
print(s[i][j] + 1, j);
}
}
int main()
{
gets(ch);
int n = strlen(ch);
memset(s, -1, sizeof(s));
for (int i = 0; i < n; i++) dp[i][i] = 1;
for (int len = 2; len <= n; len++) {
for (int i = 0; i + len - 1 < n; i++) {
int j = i + len - 1;
dp[i][j] = INF;
if (match(i,j)) dp[i][j] = dp[i + 1][j - 1];
for (int k = i; k < j; k++) {
if (dp[i][j] > dp[i][k] + dp[k + 1][j]) {
dp[i][j] = dp[i][k] + dp[k + 1][j];
s[i][j] = k;
}
}
}
}
print(0,n - 1);
printf("\n");
return 0;
}