123. 买卖股票的最佳时机 III(多维动态规划)

本文介绍了一种使用动态规划方法解决股票交易中寻找最大利润的问题,通过定义状态(包括无操作、首次买入/卖出、二次买入/卖出),描述了状态转移规则,并给出了Solution类中的maxProfit函数实现。
摘要由CSDN通过智能技术生成

动态规划:

  • 状态定义(状态机定义):
    • dp[i][0-5]分别表示到第i天结束时的状态
    • 0表示无任何操作
    • 1表示在第i天结束时完成了第一次买入操作
    • 2表示在第i天结束时完成了第一次卖出操作
    • 3表示在第i天结束时完成了第二次买入操作
    • 4表示在第i天结束时完成了第二次卖出操作
    • dp数组保存每天结束时可以获得的最大利润,因此dp[n][4]即为答案。
  • 状态转移:
    • 如果没有任何操作,则继承上一天操作
    • 若第i天完成第一次买入,则取前一天尚未进行第一次买入减当天买入股票的利润和前一天就已经进行第一次买入的利润最大值。
    • 若第i天完成第一次卖出,则取前一天尚未进行第一次卖出加当天卖出股票的利润和前一天就已经进行第一次卖出的利润最大值。
    • 若第i天完成第二次买入,则取前一天尚未进行第二次买入减当天买入股票的利润和前一天就已经进行第二次买入的利润最大值。
    • 若第i天完成第二次卖出,则取前一天尚未进行第二次卖出加当天卖出股票的利润和前一天就已经进行第二次卖出的利润最大值。
  • 状态初始化:具体可见代码
class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int[][] dp = new int[n + 1][5];
        dp[0][0] = 0; // 无操作
        dp[0][1] = -prices[0]; // 第一次买入
        dp[0][2] = 0; // 第一次卖出,当天买当天卖
        dp[0][3] = -prices[0]; // 第二次买入,当天买卖一次后,又一次买入
        dp[0][4] = 0; // 第二次卖出,当天两次买卖
        for (int i = 1; i < n + 1; ++i) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = Math.max(dp[i - 1][0] - prices[i - 1], dp[i - 1][1]);
            dp[i][2] = Math.max(dp[i - 1][1] + prices[i - 1], dp[i - 1][2]);
            dp[i][3] = Math.max(dp[i - 1][2] - prices[i - 1], dp[i - 1][3]);
            dp[i][4] = Math.max(dp[i - 1][3] + prices[i - 1], dp[i - 1][4]);
        }
        return dp[n][4];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值