【实验】ConvNeXt+UperNet

我的需求:复现convnext网络模型(convnext+upernet),部署到自己的框架代码中,用于语义分割任务(vaihingen数据集)。

前提:根据mmsegmentation框架中的手册安装mmseg、mmcv等库。

  1. 进入convnext源码网站:https://github.com/facebookresearch/ConvNeXt
  2. 进入semantic_segmantation/文件下
  3. convnext代码在backbone/convnext.py中,
    其中需要修改的地方:
    (1)我的代码中from mmcv_custom import load_checkpoint总是报错mmcv_custom模块找不到,因此将此段代码注释掉,换成from mmcv.runner import _load_checkpoint,这里是参考了mmsegmentation中poolformer代码的处理方法。
    (2)修改代码中使用了load_checkpoint的部分(在ConvNeXt类中)
    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone.
        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """

        def _init_weights(m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is 
### ConvNeXt与FPN结合的架构 ConvNeXt是一种基于卷积神经网络的新颖设计,在多个视觉任务上表现出色。特征金字塔网络(Feature Pyramid Network, FPN)则通过构建多尺度特征图来增强模型处理不同大小目标的能力。当两者结合时,可以显著提升检测精度和鲁棒性[^1]。 具体来说,ConvNeXt采用深度可分离卷积替代传统卷积操作,并引入残差连接机制以促进梯度传播。而FPN部分负责融合来自不同层次的信息,形成自底向上再自顶向下的路径结构。这种组合不仅继承了各自优点,还进一步优化了计算效率与性能表现[^2]。 ```python import torch.nn as nn class ConvNeXtBlock(nn.Module): def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv ... def build_fpn(features): p5_out = features[-1] p4_in = features[-2] p3_in = features[-3] P5_upsampled_x = nn.functional.interpolate(p5_out, scale_factor=2, mode='nearest') p4_out = P5_upsampled_x + p4_in P4_upsampled_x = nn.functional.interpolate(p4_out, scale_factor=2, mode='nearest') p3_out = P4_upsampled_x + p3_in return [p3_out, p4_out, p5_out] ``` ### 实现方法 为了实现这一架构,通常会在骨干网之后接入FPN模块。对于每个阶段产生的feature map,先经过一系列转换层调整通道数至统一维度;接着利用最近邻插值法对高层低分辨率特征进行放大并与相邻较低层高分辨率特征相加得到新的表示形式;最后输出一组具有相同空间尺寸但语义级别各异的结果供后续任务使用。 ### 应用案例 该架构广泛应用于各类计算机视觉领域,特别是在物体检测方面效果尤为突出。例如在少样本对象识别研究中提到的工作就采用了类似的策略来提高模型泛化能力,使得即使面对未见过类别也能取得良好成绩。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值