题目描述
实验室里原先有一台电脑(编号为1),最近氪金带师咕咕东又为实验室购置了N-1台电脑,编号为2到N。每台电脑都用网线连接到一台先前安装的电脑上。但是咕咕东担心网速太慢,他希望知道第i台电脑到其他电脑的最大网线长度,但是可怜的咕咕东在不久前刚刚遭受了宇宙射线的降智打击,请你帮帮他。
提示: 样例输入对应这个图,从这个图中你可以看出,距离1号电脑最远的电脑是4号电脑,他们之间的距离是3。 4号电脑与5号电脑都是距离2号电脑最远的点,故其答案是2。5号电脑距离3号电脑最远,故对于3号电脑来说它的答案是3。同样的我们可以计算出4号电脑和5号电脑的答案是4.
Input
输入文件包含多组测试数据。对于每组测试数据,第一行一个整数N (N<=10000),接下来有N-1行,每一行两个数,对于第i行的两个数,它们表示与i号电脑连接的电脑编号以及它们之间网线的长度。网线的总长度不会超过10^9,每个数之间用一个空格隔开。
Output
对于每组测试数据输出N行,第i行表示i号电脑的答案 (1<=i<=N).
Sample Input
5
1 1
2 1
3 1
1 1
Sample Output
3
2
3
4
4
算法/思路分析
题干中提到每台电脑都用网线连接到一台先前安装的电脑上,故可视为树结构。本题要求每个电脑到其他电脑的最大网线长度,即树中节点到叶节点的最大距离。正常求树的直径时,只需从任意一点u出发dfs,会走到一个点v1,之后再以v1为起点dfs,会走到v2,v1和v2之间即最长路径。本题则由于不知点u怎么走才是最长路径,故需要通过3次dfs得到v1-u和v2-u,从而判断最长路径。
代码
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
using namespace std;
const int maxn = 1e4+10;
#define ll long long
//邻接表存储图结构
struct edge
{
ll to;
ll w;
};
vector<edge> G[maxn];//G[i]表示i到G[i].to的边权为G[i].w
ll dis[maxn];//记录结果
ll MAX,s;//MAX记录最大长度,s记录遍历的起点
void dfs(ll u,ll nt,ll len)
{
if(MAX <= len)
{
s = u;
MAX = len;
}
ll Len = G[u].size();
for(ll i = 0;i < Len; i++)
{
ll v = G[u][i].to;
if(v == nt)continue;
dfs(v,u,len+G[u][i].w);
dis[v]=max(dis[v],len+G[u][i].w);
}
}
int main()
{
ll n;
while(~scanf("%d",&n))
{
for(ll i = 0;i <= n;i++) G[i].clear();
for(ll i = 2;i <= n;i++)
{
ll v,w;
scanf("%d%d",&v,&w);
edge e;
e.to = v;e.w = w;
G[i].push_back(e);
//无向边,故按两个边处理
e.to = i;
G[v].push_back(e);
}
memset(dis,0,sizeof(dis));
MAX = 0;
s = 0;
dfs(1,-1,0);
dfs(s,-1,0);
dfs(s,-1,0);
for(ll i = 1;i <= n;i++) printf("%d\n",dis[i]);
}
return 0;
}