hive (数据仓库工具)
hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
Hive是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
hive的基本思想:
hive是基于Hadoop的一个数据创库工具,可以将一个结构化的数据文件映射为一张数据库表并提供类sql查询功能。
为什么要使用hive:
直接使用hadoop使用的所面临的问题:
1.人员学习成本高
2.项目周期要求短
3.MapReduce实现复杂查询的逻辑开发难度太大
使用hive的好处:
1.提供接口采用类sql语法,提供快速开发能力。
2.避免了去写MapReduce,减少开发人员学习成本。
3.功能扩展很方便。
hive的特点:
可扩展:
hive可以自由扩展集群的规模,一般情况下不需要重启服务。
延展性:
hive支持用户自定义函数,用户根据自己的需求来实现自己的函数。
容错:
良好的容错性,节点出现错误sql仍可以完成执行。
Hive常见的应用场景
(1)日志分析:大部分互联网公司使用hive进行日志分析,包括百度、淘宝等。
1)统计网站一个时间段内的pv、uv
2)多维度数据分析
(2)海量结构化数据离线分析
Hive的特点(优缺点)
(一)hive的优点
(1)简单容易上手:提供了类SQL查询语言HQL
(2)可扩展:为超大数据集设计了计算/扩展能力(MR作为计算引擎,HDFS作为存储系统)
一般情况下不需要重启服务Hive可以自由的扩展集群的规模。
(3)提供统一的元数据管理
(4)延展性:Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数
(5)容错:良好的容错性,节点出现问题SQL仍可完成执行
(二)hive的缺点(局限性)
(1)hive的HQL表达能力有限
1)迭代式算法无法表达,比如pagerank
2)数据挖掘方面,比如kmeans
(2)hive的效率比较低
1)hive自动生成的mapreduce作业,通常情况下不够智能化
2)hive调优比较困难,粒度较粗
3)hive可控性差
原著:
https://www.cnblogs.com/zimo-jing/p/9028949.html
- hive建库建表与数据导入
5.1. 建库
hive中有一个默认的库:
库名: default
库目录:hdfs://hdp20-01:9000/user/hive/warehouse
新建库:
create database db_order;
库建好后,在hdfs中会生成一个库目录:
hdfs://hdp20-01:9000/user/hive/warehouse/db_order.db
5.2. 建表
5.2.1. 基本建表语句
创建表
use db_order;
create table t_order(id string,create_time string,amount float,uid string);
表建好后,会在所属的库目录中生成一个表目录
/user/hive/warehouse/db_order.db/t_order
只是,这样建表的话,hive会认为表数据文件中的字段分隔符为 ^A
正确的建表语句为:
create table t_order(id string,create_time string,amount float,uid string)
row format delimited
fields terminated by ‘,’;
这样就指定了,我们的表数据文件中的字段分隔符为 “,”
5.2.2. 删除表
drop table t_order;
删除表的效果是:
hive会从元数据库中清除关于这个表的信息;
hive还会从hdfs中删除这个表的表目录;
5.2.3. 内部表与外部表
内部表(MANAGED_TABLE):表目录按照hive的规范来部署,位于hive的仓库目录/user/hive/warehouse中
外部表(EXTERNAL_TABLE):表目录由建表用户自己指定
create external table t_lxq (ip string,url string,access_time string)
row format delimited
fields terminated by ‘,’
location ‘/lxq /log’;
外部表和内部表的特性差别:
1、内部表的目录在hive的仓库目录中 VS 外部表的目录由用户指定
2、drop一个内部表时:hive会清除相关元数据,并删除表数据目录
3、drop一个外部表时:hive只会清除相关元数据;
一个hive的数据仓库,最底层的表,一定是来自于外部系统,为了不影响外部系统的工作逻辑,在hive中可建external表来映射这些外部系统产生的数据目录;
然后,后续的etl操作,产生的各种表建议用managed_table
5.2.4. 分区表
分区表的实质是:在表目录中为数据文件创建分区子目录,以便于在查询时,MR程序可以针对分区子目录中的数据进行处理,缩减读取数据的范围。
比如,网站每天产生的浏览记录,浏览记录应该建一个表来存放,但是,有时候,我们可能只需要对某一天的浏览记录进行分析
这时,就可以将这个表建为分区表,每天的数据导入其中的一个分区;
当然,每日的分区目录,应该有一个目录名(分区字段)
5.2.4.1. 一个分区字段的实例:
示例如下:
1、创建带分区的表
create table t_access(ip string,url string,access_time string)
partitioned by(dt string)
row format delimited
fields terminated by ‘,’;
注意:分区字段不能是表定义中的已存在字段
2、linux向分区中导入数据
load data local inpath ‘/root/access.log.2017-08-04.log’ into table t_access partition(dt=‘20170804’);
load data local inpath ‘/root/access.log.2017-08-05.log’ into table t_access partition(dt=‘20170805’);
hdfs向分区导入数据:
load data inpath ‘/lxq/…’ into table t_access partition(dt =‘20170805’);
3、针对分区数据进行查询
a、统计8月4号的总PV:
select count(*) from t_access where dt=‘20170804’;
实质:就是将分区字段当成表字段来用,就可以使用where子句指定分区了
b、统计表中所有数据总的PV:
select count(*) from t_access;
实质:不指定分区条件即可
5.2.4.2. 多个分区字段示例
建表:
create table t_partition(id int,name string,age int)
partitioned by(department string,sex string,howold int)
row format delimited fields terminated by ‘,’;
导数据:
load data local inpath ‘/root/p1.dat’ into table t_partition partition(department=‘taiyuan’,sex=‘male’,howold=20);
5.2.5. CTAS建表语法
可以通过已存在表来建表:
1、create table t_user_2 like t_user;
新建的t_user_2表结构定义与源表t_user一致,但是没有数据
2、在建表的同时插入数据
create table t_access_user
as
select ip,url from t_access;
t_access_user会根据select查询的字段来建表,同时将查询的结果插入新表中
5.3. 数据导入导出
5.3.1. 将数据文件导入hive的表
方式1:导入数据的一种方式:
手动用hdfs命令,将文件放入表目录;
方式2:在hive的交互式shell中用hive命令来导入本地数据到表目录
hive>load data local inpath ‘/root/order.data.2’ into table t_order;
方式3:用hive命令导入hdfs中的数据文件到表目录
hive>load data inpath ‘/access.log.2017-08-06.log’ into table t_access partition(dt=‘20170806’);
注意:导本地文件和导HDFS文件的区别:
本地文件导入表:复制
hdfs文件导入表:移动
5.3.2. 将hive表中的数据导出到指定路径的文件
1、将hive表中的数据导入HDFS的文件
insert overwrite directory ‘/root/access-data’
row format delimited fields terminated by ‘,’
select * from t_access;
2、将hive表中的数据导入本地磁盘文件
insert overwrite local directory ‘/root/access-data’
row format delimited fields terminated by ‘,’
select * from t_access limit 100;