Python列表-for语句创建列表、字典、集合、生成器

for语句创建列表、字典、集合、生成器

1.列表

1.1 基本语法

[表达式 for 循环计数器 in 可迭代对象]

举例

a = [ i + i for i in range(0,5) ]
print (a) # 打印 [0, 2, 4, 6, 8]

上面的例子中,对range(0,5)中的每个元素 i 取出来,执行 i+i 之后放入新列表。

1.2 for+if

for表达式还可以在可迭代对象后面加if条件,这样就可以筛选出符合特定条件的元素放入新列表中。
例:

a = [ i + i for i in range(0,5) if i % 2 == 0]
print (a)  # 打印[0, 4, 8]

上面的例子中的 if i % 2 == 0 筛选了range(0,5)中的偶数,只对符合条件的3个元素(0,2,4)进行了迭代。

1.3 嵌套for

for既然能和if结合,当然也能和for结合,即嵌套:

a = [[i, j] for i in range(1, 3) for j in range(3, 5)]
print(a)  # 结果 [[1, 3], [1, 4], [2, 3], [2, 4]]

上述代码等价于:

a = []
for i in range(1, 3):
    for j in range(3, 5):
        a.append([i, j])
print(a)

当然啦,嵌套for里可以依然可以嵌入循环或者判断,我们再来一层:

a = [[i, j] for i in range(5) for j in range(5) if i == j]
print(a)  # 结果[[0, 0], [1, 1], [2, 2], [3, 3], [4, 4]]

到这里,用这种语法创建列表的方式你已经学会了,这三个例子应该彻底打开了你的思路,让你可以放胆去写了。其实和传统方式没啥区别,只不过可以写在一行,看起来相对简洁、优雅~

2.生成器

上面我们把结果和推导式放在了一个方括号里,所以生成的是列表,如果放在圆括号里捏?会不会是元组呢?我们来试一下:

a = ([i, j] for i in range(5) for j in range(5) if i == j)
print(a)  

结果却是酱紫的:
生成器
原来是一个生成器。
不过我们照样可以用for循环遍历它!

a = ([i, j] for i in range(5) for j in range(5) if i == j)
for item in a:
    print(item, end=" ")
# 结果:[0, 0] [1, 1] [2, 2] [3, 3] [4, 4] 

如果想要生成列表或者元组的话,只需要用内置函数 list()tuple() 转换一下就好了。

3.字典与集合

既然试过了方括号和圆括号,怎么好意思不试试花括号呢?我们都知道,花括号在Python中可以表示两种数据类型:字典&集合。那我们就分别试一下:

a = {i: j for i in range(5) for j in range(5) if i == j}
print(a)

b = {i*j for i in range(5) for j in range(5) if i == j}
print(b)

结果如下:
集合&字典
果不其然,字典和集合均支持这种方式创建~

参考文章

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值