行程和用户

题目描述

sql架构

Create table If Not Exists Trips (Id int, Client_Id int, Driver_Id int, City_Id int, Status ENUM('completed', 'cancelled_by_driver', 'cancelled_by_client'), Request_at varchar(50))
Create table If Not Exists Users (Users_Id int, Banned varchar(50), Role ENUM('client', 'driver', 'partner'))
Truncate table Trips
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('1', '1', '10', '1', 'completed', '2013-10-01')
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('2', '2', '11', '1', 'cancelled_by_driver', '2013-10-01')
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('3', '3', '12', '6', 'completed', '2013-10-01')
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('4', '4', '13', '6', 'cancelled_by_client', '2013-10-01')
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('5', '1', '10', '1', 'completed', '2013-10-02')
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('6', '2', '11', '6', 'completed', '2013-10-02')
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('7', '3', '12', '6', 'completed', '2013-10-02')
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('8', '2', '12', '12', 'completed', '2013-10-03')
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('9', '3', '10', '12', 'completed', '2013-10-03')
insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('10', '4', '13', '12', 'cancelled_by_driver', '2013-10-03')
Truncate table Users
insert into Users (Users_Id, Banned, Role) values ('1', 'No', 'client')
insert into Users (Users_Id, Banned, Role) values ('2', 'Yes', 'client')
insert into Users (Users_Id, Banned, Role) values ('3', 'No', 'client')
insert into Users (Users_Id, Banned, Role) values ('4', 'No', 'client')
insert into Users (Users_Id, Banned, Role) values ('10', 'No', 'driver')
insert into Users (Users_Id, Banned, Role) values ('11', 'No', 'driver')
insert into Users (Users_Id, Banned, Role) values ('12', 'No', 'driver')
insert into Users (Users_Id, Banned, Role) values ('13', 'No', 'driver')

Trips 表中存所有出租车的行程信息。每段行程有唯一键 Id,Client_Id 和 Driver_Id 是 Users 表中 Users_Id 的外键。Status 是枚举类型,枚举成员为 (‘completed’, ‘cancelled_by_driver’, ‘cancelled_by_client’)。

+----+-----------+-----------+---------+--------------------+----------+
| Id | Client_Id | Driver_Id | City_Id |        Status      |Request_at|
+----+-----------+-----------+---------+--------------------+----------+
| 1  |     1     |    10     |    1    |     completed      |2013-10-01|
| 2  |     2     |    11     |    1    | cancelled_by_driver|2013-10-01|
| 3  |     3     |    12     |    6    |     completed      |2013-10-01|
| 4  |     4     |    13     |    6    | cancelled_by_client|2013-10-01|
| 5  |     1     |    10     |    1    |     completed      |2013-10-02|
| 6  |     2     |    11     |    6    |     completed      |2013-10-02|
| 7  |     3     |    12     |    6    |     completed      |2013-10-02|
| 8  |     2     |    12     |    12   |     completed      |2013-10-03|
| 9  |     3     |    10     |    12   |     completed      |2013-10-03| 
| 10 |     4     |    13     |    12   | cancelled_by_driver|2013-10-03|
+----+-----------+-----------+---------+--------------------+----------+

Users 表存所有用户。每个用户有唯一键 Users_Id。Banned 表示这个用户是否被禁止,Role 则是一个表示(‘client’, ‘driver’, ‘partner’)的枚举类型。

+----------+--------+--------+
| Users_Id | Banned |  Role  |
+----------+--------+--------+
|    1     |   No   | client |
|    2     |   Yes  | client |
|    3     |   No   | client |
|    4     |   No   | client |
|    10    |   No   | driver |
|    11    |   No   | driver |
|    12    |   No   | driver |
|    13    |   No   | driver |
+----------+--------+--------+

写一段 SQL 语句查出 2013年10月1日 至 2013年10月3日 期间非禁止用户的取消率。基于上表,你的 SQL 语句应返回如下结果,取消率(Cancellation Rate)保留两位小数。

取消率的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)

+------------+-------------------+
|     Day    | Cancellation Rate |
+------------+-------------------+
| 2013-10-01 |       0.33        |
| 2013-10-02 |       0.00        |
| 2013-10-03 |       0.50        |
+------------+-------------------+

统计每天非禁止用户的取消率,需要知道非禁止用户有哪些,总行程数,取消的行程数。

解法一

首先确定被禁止用户的行程记录,再剔除这些行程记录。

正确的做法是对client_id和driver_id各自关联的users_id,同时检测是否被禁止。

先说一种错误的找出没被禁止用户行程记录的方法。此方法很有迷惑性。

思路:

if (client_id = users_id 或 driver_id = users_id) 且 users_id没有被禁止
{
    此条记录没被禁止。
}

SQL代码

SELECT *
FROM Trips AS T JOIN Users AS U 
ON (T.client_id = U.users_id  OR T.driver_id = U.users_id )  AND U.banned ='No'

乍一看,思路是对。其实是错误的。因为,我们不知觉得肯定了一个假设——client_id与driver_id是相同的。只有当两者相同时,才能用此条件排除被禁止用户的行程记录。

错误的结果:

+------+-----------+-----------+---------+---------------------+------------+----------+--------+--------+
| Id   | Client_Id | Driver_Id | City_Id | STATUS              | Request_at | Users_Id | Banned | Role   |
+------+-----------+-----------+---------+---------------------+------------+----------+--------+--------+
|    1 |         1 |        10 |       1 | completed           | 2013-10-01 |        1 | No     | client |
|    1 |         1 |        10 |       1 | completed           | 2013-10-01 |       10 | No     | driver |
|    2 |         2 |        11 |       1 | cancelled_by_driver | 2013-10-01 |       11 | No     | driver |
|    3 |         3 |        12 |       6 | completed           | 2013-10-01 |        3 | No     | client |
|    3 |         3 |        12 |       6 | completed           | 2013-10-01 |       12 | No     | driver |
|    4 |         4 |        13 |       6 | cancelled_by_client | 2013-10-01 |        4 | No     | client |
|    4 |         4 |        13 |       6 | cancelled_by_client | 2013-10-01 |       13 | No     | driver |
|    5 |         1 |        10 |       1 | completed           | 2013-10-02 |        1 | No     | client |
|    5 |         1 |        10 |       1 | completed           | 2013-10-02 |       10 | No     | driver |
|    6 |         2 |        11 |       6 | completed           | 2013-10-02 |       11 | No     | driver |
|    7 |         3 |        12 |       6 | completed           | 2013-10-02 |        3 | No     | client |
|    7 |         3 |        12 |       6 | completed           | 2013-10-02 |       12 | No     | driver |
|    8 |         2 |        12 |      12 | completed           | 2013-10-03 |       12 | No     | driver |
|    9 |         3 |        10 |      12 | completed           | 2013-10-03 |        3 | No     | client |
|    9 |         3 |        10 |      12 | completed           | 2013-10-03 |       10 | No     | driver |
|   10 |         4 |        13 |      12 | cancelled_by_driver | 2013-10-03 |        4 | No     | client |
|   10 |         4 |        13 |      12 | cancelled_by_driver | 2013-10-03 |       13 | No     | driver |
+------+-----------+-----------+---------+---------------------+------------+----------+--------+--------+

结果中,被禁止的users_id = 2,其行程记录没被剔除掉。

明显, client_id与driver_id不一定相同 。

正确的做法是对client_id和driver_id各自关联的users_id,同时检测是否被禁止。

思路:

if (client_id = users_id_1 且 users_id_1没被禁止 并且 client_id = users_id_2 且 users_id_2没被禁止){
    此条记录没被禁止。
}

SQL代码:

SELECT *
FROM Trips AS T
JOIN Users AS U1 ON (T.client_id = U1.users_id AND U1.banned ='No')
JOIN Users AS U2 ON (T.driver_id = U2.users_id AND U2.banned ='No')

在此基础上,按日期分组,统计每组的 总行程数,取消的行程数 。

每组的总行程数:COUNT(T.STATUS)。

每组的取消的行程数:

SUM(
	IF(T.STATUS = 'completed',0,1)
)

取消率 = 每组的取消的行程数 / 每组的总行程数

完整逻辑为:

SELECT T.request_at AS `Day`, 
	ROUND(
			SUM(
				IF(T.STATUS = 'completed',0,1)
			)
			/ 
			COUNT(T.STATUS),
			2
	) AS `Cancellation Rate`
FROM Trips AS T
JOIN Users AS U1 ON (T.client_id = U1.users_id AND U1.banned ='No')
JOIN Users AS U2 ON (T.driver_id = U2.users_id AND U2.banned ='No')
WHERE T.request_at BETWEEN '2013-10-01' AND '2013-10-03'
GROUP BY T.request_at

其中SUM求和函数,COUNT计数函数,ROUND四舍五入函数。

解法二

思路与解法一相同。

而采用不同的方法排除掉被禁止用户的行程记录。想到排除,就联想到集合差。

client_id和driver_id的全部为集合U。被禁止的users_id集合为A。

U减去A的结果为没被禁止的用户。

(
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
) AS A

先演示一个错误的解法:

行程表连接表A,排除掉被被禁止的行程。

SELECT *
FROM trips AS T,
(
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
) AS A
WHERE (T.Client_Id != A.users_id AND T.Driver_Id != A.users_id)

剩下的逻辑与解法一后部分相同,完善后的逻辑为:

SELECT T.request_at AS `Day`, 
	ROUND(
			SUM(
				IF(T.STATUS = 'completed',0,1)
			)
			/ 
			COUNT(T.STATUS),
			2
	) AS `Cancellation Rate`
FROM trips AS T,
(
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
) AS A
WHERE (T.Client_Id != A.users_id AND T.Driver_Id != A.users_id) AND T.request_at BETWEEN '2013-10-01' AND '2013-10-03'
GROUP BY T.request_at

很可惜,当表A为空时,此方法的结果是空表。但是表A为空,可能是有用户但是没有被禁止的用户。因此方法是错误的。

正确的解法是:

行程表left join 表A两次,A.users_id都为NULL的行都是没被排除的行。

SELECT *
FROM trips AS T LEFT JOIN 
(
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
) AS A ON (T.Client_Id = A.users_id)
LEFT JOIN (
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
) AS A1
ON (T.Driver_Id = A1.users_id)
WHERE A.users_id IS NULL AND A1.users_id IS NULL

补上其它部分的逻辑为:

SELECT T.request_at AS `Day`, 
	ROUND(
			SUM(
				IF(T.STATUS = 'completed',0,1)
			)
			/ 
			COUNT(T.STATUS),
			2
	) AS `Cancellation Rate`
FROM trips AS T LEFT JOIN 
(
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
) AS A ON (T.Client_Id = A.users_id)
LEFT JOIN (
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
) AS A1
ON (T.Driver_Id = A1.users_id)
WHERE A.users_id IS NULL AND A1.users_id IS NULL AND T.request_at BETWEEN '2013-10-01' AND '2013-10-03'
GROUP BY T.request_at

解法三

与解法二思路相同。

找出被禁止的用户后,不再连接行程表和用户表,直接从行程表中排除掉被被禁止用户的行程记录。

被禁止的用户用子查询:

(
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
)

行程表中client_id和driver_id都在此子查询结果中的行要剔除掉。

SELECT *
FROM trips AS T
WHERE 
T.Client_Id NOT IN (
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
)
AND
T.Driver_Id NOT IN (
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
)

补上其它部分:

SELECT T.request_at AS `Day`, 
	ROUND(
			SUM(
				IF(T.STATUS = 'completed',0,1)
			)
			/ 
			COUNT(T.STATUS),
			2
	) AS `Cancellation Rate`
FROM trips AS T
WHERE 
T.Client_Id NOT IN (
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
)AND
T.Driver_Id NOT IN (
	SELECT users_id
	FROM users
	WHERE banned = 'Yes'
)
AND T.request_at BETWEEN '2013-10-01' AND '2013-10-03'
GROUP BY T.request_at

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值