Description
有n(n<=30)种砖块,已知三条边长,每种都有无穷多个。要求选一些立方体摞成一根尽量高的柱子(每个砖块可以自行选择一条边作为高),使得每个砖块的底面长宽分别严格小于它下方砖块的底面长宽,求塔的最大高度。(多组输入,有n == 0的情况,数据都在int范围内)
Input
第一行 T 组 n
n个方砖
a,b,c砖的三维.
(T<=100,n<=30,0<= a,b,c<=1e6)
Output
见样例
Sample Input
4
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
做法 : 建立DAG
由于每个砖块的底面长宽分别严格小于它下方砖块的底面长宽,因此不难将这样一种关系作为建图
的依据,而本题也就转化为最长路问题。
也就是说如果砖块j能放在砖块i.上,那么i和j之间存在一边(i,j),且边权就是砖块j所选取的高。
本题的另一个问题在于每个砖块的高有三种选法,怎样建图更合适呢?
不妨将每个砖块拆解为三种堆叠方式,即将一个砖块分解为三个砖块, 每一个拆解得到的砖块都选取不同的高。
初始的起点是大地,大地的底面是无穷大的,则大地可达任意砖块,当然我们写程序时不必特意写上无穷大。
假设有两个砖块,三条边分别为31, 41, 59和33, 83, 27,那么整张DAG应该如下图所示。
图中蓝实框所表示的是一个砖块拆解得到的一组砖块,之所以用{}示底面长宽,因为砖块一旦选取了高,底面边长就是无序的。
图中黄虚框表示的是重复计算部分,为下文做铺垫。
转移状态说明
题目要求的是塔的最大高度,已经转化为最长路问题,其起点上文已指出是大地,那么终点呢?
显然终点已经自然确定,那就是某砖块上不能再搭别的砖块的时候。
之前在图上标记的黄虚框表明有重复计算,下面我们开始考 虑转移方程。
显然,砖块- -旦选取了高,那么这块砖块上最大能放的高度是确定的。
某个砖块i有三种堆叠方式分别记为0,1,2,那么对于砖块i和其堆叠方式r来说则有如下转移方程
d(i,r)= max{d(j,r’)+h’}
其中j是所有那些在砖块i以r方式堆叠时可放上的砖块,r’ 对应j此时的摆放方式,也就确定了此时唯一的高度h’。
在实际编写时,将所有d(i, r)都初始化为-1,表示未计算过。
在试图计算前,如果发现已经计算过,直接返回保存的值;否则就按步计算,并保存。
最终答案是所有d(i,r)的最大值。
方法一:
//code1
//Andong 2021/1/29
//#include <bits/stdc++.h>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define INF 0x3f3f3f3f
#define ll long long
#define LL long long
#define MAXN (1000 + 5)
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
using namespace std;
int d[MAXN][3];
int x[MAXN], y[MAXN], z[MAXN];
int babylon_sub(int c, int rot, int n) {
if (d[c][rot] != -1) {
return d[c][rot];
}
d[c][rot] = 0;
int base1, base2;
if (rot == 0) {
base1 = x[c];
base2 = y[c];
}
if (rot == 1) {
base1 = y[c];
base2 = z[c];
}
if (rot == 2) {
base1 = x[c];
base2 = z[c];
}
for (int i = 0; i < n; i++) {
if ((x[i] < base1 && y[i] < base2) || (y[i] < base1 && x[i] < base2))
d[c][rot] = MAX(d[c][rot], babylon_sub(i, 0, n) + z[i]);
if ((y[i] < base1 && z[i] < base2) || (z[i] < base1 && y[i] < base2))
d[c][rot] = MAX(d[c][rot], babylon_sub(i, 1, n) + x[i]);
if ((x[i] < base1 && z[i] < base2) || (z[i] < base1 && x[i] < base2))
d[c][rot] = MAX(d[c][rot], babylon_sub(i, 2, n) + y[i]);
}
return d[c][rot];
}
int babylon(int n) {
for (int i = 0; i < n; i++) {
d[i][0] = -1;
d[i][1] = -1;
d[i][2] = -1;
}
int r = 0;
for (int i = 0; i < n; i++) {
r = MAX(r, babylon_sub(i, 0, n) + z[i]);
r = MAX(r, babylon_sub(i, 1, n) + x[i]);
r = MAX(r, babylon_sub(i, 2, n) + y[i]);
}
return r;
}
int main() {
int t = 0;
int T;
cin>>T;
while(T--){
int n;
cin >> n;t++;
for (int i = 0; i < n; i++) {
cin >> x[i] >> y[i] >> z[i];
}
cout << "Case " << t << ":"<< " maximum height = " << babylon(n);
cout << endl;
}
return 0;
}
方法二:
稍微用了一点拓扑的思路在处理DAG上加速了
//code2
//Andong 2021/1/29
//#include <bits/stdc++.h>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define INF 0x3f3f3f3f
#define ll long long
#define LL long long
using namespace std;
const int maxn = 1e3 + 10;
const ll mod = 1e9 + 7;
int a[maxn],b[maxn],c[maxn];
struct node {
int c,l,h;
} p[maxn];
vector<int>e[maxn];
int in[maxn],ans[maxn];
int main() {
int n,cas = 0;
int T;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
memset(in,0,sizeof(in));
memset(ans,0,sizeof(ans));
for(int i=0; i<n; i++) {
scanf("%d%d%d",&a[i],&b[i],&c[i]);
p[i*3+0].c=min(a[i],b[i]);p[i*3+0].l=max(a[i],b[i]);p[i*3+0].h=c[i];
p[i*3+1].c=min(a[i],c[i]);p[i*3+1].l=max(a[i],c[i]);p[i*3+1].h=b[i];
p[i*3+2].c=min(c[i],b[i]);p[i*3+2].l=max(c[i],b[i]);p[i*3+2].h=a[i];
e[i*3+0].clear();e[i*3+1].clear();e[i*3+2].clear();
}
n=n*3;
for(int i=0; i<n; i++) {
for(int j=i+1; j<n; j++) {
if(p[i].c<p[j].c&&p[i].l<p[j].l) {
e[i].push_back(j);
in[j]++;
}
if(p[i].c>p[j].c&&p[i].l>p[j].l) {
e[j].push_back(i);
in[i]++;
}
}
}
queue<int>num;
for(int i=0; i<n; i++) {
if(in[i]==0) {
num.push(i);
}
}
int ANS=0;
while(!num.empty()) {
int tmp = num.front();
num.pop();
ans[tmp]=ans[tmp]+p[tmp].h;
int len = e[tmp].size();
for(int i=0; i<len; i++) {
int u=e[tmp][i];
ans[u]=max(ans[u],ans[tmp]);
in[u]--;
if(in[u]==0)num.push(u);
}
ANS=max(ANS,ans[tmp]);
}
printf("Case %d: maximum height = %d\n",++cas,ANS);
}
return 0;
}