Description:
You are given a string s s s. You can build new string p p p from s s s using the following operation no more than two times:
choose any subsequence
s
i
1
,
s
i
2
,
…
,
s
i
k
s_{i_{1}},s_{i_{2}},…,s_{i_{k}}
si1,si2,…,sik where
1
≤
i
1
<
i
2
<
⋯
<
i
k
≤
∣
s
∣
1≤i_{1}<i_{2}<⋯<i_{k}≤|s|
1≤i1<i2<⋯<ik≤∣s∣;
erase the chosen subsequence from s (s can become empty);
concatenate chosen subsequence to the right of the string p (in other words,
p
=
p
+
s
i
1
s
i
2
…
s
i
k
p=p+s_{i_{1}}s_{i_{2}}…s_{i_{k}}
p=p+si1si2…sik).
Of course, initially the string
p
p
p is empty.
For example, let s = a b a b c d s=ababcd s=ababcd. At first, let’s choose subsequence s 1 s 4 s 5 = a b c s_{1}s_{4}s_{5}=abc s1s4s5=abc — we will get s = b a d s=bad s=bad and p = a b c p=abc p=abc. At second, let’s choose s 1 s 2 = b a s_{1}s_{2}=ba s1s2=ba — we will get s = d s=d s=d and p = a b c b a p=abcba p=abcba. So we can build a b c b a abcba abcba from a b a b c d ababcd ababcd.
Can you build a given string t using the algorithm above?
Input
The first line contains the single integer T ( 1 ≤ T ≤ 100 ) T (1≤T≤100) T(1≤T≤100) — the number of test cases.
Next 2 T 2T 2T lines contain test cases — two per test case. The first line contains string s s s consisting of lowercase Latin letters ( 1 ≤ ∣ s ∣ ≤ 400 ) (1≤|s|≤400) (1≤∣s∣≤400) — the initial string.
The second line contains string t consisting of lowercase Latin letters ( 1 ≤ ∣ t ∣ ≤ ∣ s ∣ ) (1≤|t|≤|s|) (1≤∣t∣≤∣s∣) — the string you’d like to build.
It’s guaranteed that the total length of strings s s s doesn’t exceed 400 400 400.
Output
Print T T T answers — one per test case. Print Y E S YES YES (case insensitive) if it’s possible to build t and N O NO NO (case insensitive) otherwise.
Example
input
4
ababcd
abcba
a
b
defi
fed
xyz
x
output
YES
NO
NO
YES
题意:
给出两个字符串 s s s 和 p p p,对 s s s 可以操作最多两次,从 s s s 中分离出一个子串,然后加到分离出来的串后面,问最多两次操作能不能把 s s s 变成 p p p。
枚举把
t
t
t 分成哪两段,然后
D
P
DP
DP
把
t
t
t 分成两个串,
f
i
j
f_{ij}
fij 表示在
s
s
s 中匹配第一个串到
i
i
i, 匹配第二个串
j
j
j 的最短长度。
其实匹配这一步可以使用序列自动机。
AC代码:
#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
using namespace std;
#define sd(n) scanf("%d", &n)
#define sdd(n, m) scanf("%d%d", &n, &m)
#define sddd(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define pd(n) printf("%d\n", n)
#define pc(n) printf("%c", n)
#define pdd(n, m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n, m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld", &n)
#define sldd(n, m) scanf("%lld%lld", &n, &m)
#define slddd(n, m, k) scanf("%lld%lld%lld", &n, &m, &k)
#define sf(n) scanf("%lf", &n)
#define sc(n) scanf("%c", &n)
#define sff(n, m) scanf("%lf%lf", &n, &m)
#define sfff(n, m, k) scanf("%lf%lf%lf", &n, &m, &k)
#define ss(str) scanf("%s", str)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
#define mem(a, n) memset(a, n, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define mod(x) ((x) % MOD)
#define gcd(a, b) __gcd(a, b)
#define lowbit(x) (x & -x)
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int MOD = 1e9 + 7;
const double eps = 1e-9;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
inline int read()
{
int ret = 0, sgn = 1;
char ch = getchar();
while (ch < '0' || ch > '9')
{
if (ch == '-')
sgn = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9')
{
ret = ret * 10 + ch - '0';
ch = getchar();
}
return ret * sgn;
}
inline void Out(int a) //Êä³öÍâ¹Ò
{
if (a > 9)
Out(a / 10);
putchar(a % 10 + '0');
}
ll gcd(ll a, ll b)
{
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
return a * b / gcd(a, b);
}
///快速幂m^k%mod
ll qpow(ll a, ll b, ll mod)
{
if (a >= mod)
a = a % mod + mod;
ll ans = 1;
while (b)
{
if (b & 1)
{
ans = ans * a;
if (ans >= mod)
ans = ans % mod + mod;
}
a *= a;
if (a >= mod)
a = a % mod + mod;
b >>= 1;
}
return ans;
}
// 快速幂求逆元
int Fermat(int a, int p) //费马求a关于b的逆元
{
return qpow(a, p - 2, p);
}
///扩展欧几里得
int exgcd(int a, int b, int &x, int &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
int g = exgcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
return g;
}
///使用ecgcd求a的逆元x
int mod_reverse(int a, int p)
{
int d, x, y;
d = exgcd(a, p, x, y);
if (d == 1)
return (x % p + p) % p;
else
return -1;
}
///中国剩余定理模板0
ll china(int a[], int b[], int n) //a[]为除数,b[]为余数
{
int M = 1, y, x = 0;
for (int i = 0; i < n; ++i) //算出它们累乘的结果
M *= a[i];
for (int i = 0; i < n; ++i)
{
int w = M / a[i];
int tx = 0;
int t = exgcd(w, a[i], tx, y); //计算逆元
x = (x + w * (b[i] / t) * x) % M;
}
return (x + M) % M;
}
const int N = 1000;
char s1[N], s2[N];
int a[N][26];
int f[N][N];
int len1, len2;
bool flag;
void cal(char *s, char *t, int n, int m)
{
for (int i = 0; i <= n; i++)
for (int j = 0; j <= m; j++)
{
if (!i && !j)
continue;
f[i][j] = inf;
if (i && f[i - 1][j] < inf)
f[i][j] = min(f[i][j], a[f[i - 1][j]][s[i] - 'a']);
if (j && f[i][j - 1] < inf)
f[i][j] = min(f[i][j], a[f[i][j - 1]][t[j] - 'a']);
}
return;
}
int main()
{
int t;
sd(t);
while (t--)
{
ss(s1 + 1);
ss(s2 + 1);
len1 = strlen(s1 + 1);
len2 = strlen(s2 + 1);
rep(i, 0, len1)
{
rep(j, 0, 25)
{
a[i][j] = inf;
rep(k, i + 1, len1)
{
if (s1[k] == 'a' + j)
{
a[i][j] = k;
break;
}
}
}
}
flag = 0;
rep(i, 1, len2)
{
cal(s2, s2 + i, i, len2 - i);
if (f[i][len2 - i] < inf)
{
flag = 1;
break;
}
}
if (flag)
puts("YES");
else
puts("NO");
}
return 0;
}