2019年4月10日训练日记

博主分享了近期在算法竞赛中的体验,特别是区间DP的学习经历,反思了在比赛中的失误,如状态转移方程的理解、代码细节的忽视及优化策略的选择。计划未来深入研究区间DP题目,理解递归函数,并重新审视比赛题目。

这几天一直在做区间dp,对于区间dp一直都是模棱两可,状态转移方程自己去想很难想出来,但是看别人写的就能理解是什么意思,还是做题太少。

今天的体验赛给我的感觉就是太水了,十道题有五道是原题,自己居然立案一道之前做过的题都wa了一次,后来发现是因为忘记+1了,真是粗心大意,然后还有一道很简单但是超时的题,想优化以为是最长上升子序列的思想,套了半天也不行,然后发现从两头往中间找别两次从一端找可以节约很多时间。剩下的就是一些很难的题了。

矩阵对比那道题我根本没有明白他的原理只是找到了两个矩阵的规律,然后蒙对了。之后就是递增递减序列的题,贪心做的,也不是很清楚,就是跟着思路来,慢慢改,也过了。

这样不明不白就过了,还是说明自己的功夫不到家,还是有待提高。

接下来的几天就继续刷区间dp的题,然后把递归函数去了解一下。

有空的时候把体验赛的题再好好消化吸收一下。

内容概要:本文研究基于SPEA2(Strength Pareto Evolutionary Algorithm 2)的移动机器人路径规划方法,利用该多目标优化算法在复杂环境中寻找最优或近似最优的机器人运动路径。文中详细阐述了SPEA2算法的基本原理及其在路径规划中的具体应用流程,并通过Matlab代码实现仿真验证,展示了算法在避障、路径平滑性和多目标优化方面的有效性。研究结合栅格地图建模,定义了包括路径长度、安全性与能耗在内的多个优化目标,体现了SPEA2在处理多目标冲突问题上的优势。; 适合人群:具备一定Matlab编程基础,从事智能优化算法、机器人路径规划或人工智能相关领域的研究生及科研人员;熟悉进化算法并希望将其应用于实际工程问题的技术开发者。; 使用场景及目标:①掌握SPEA2算法在移动机器人路径规划中的建模与实现方法;②学习如何将多目标优化思想融【移动机器人路径规划】基于SPEA2的移动机器人路径规划研究(Matlab代码实现)入路径规划问题;③为后续研究NSGA-II、MOEA/D等其他多目标算法提供对比基准和技术参考; 阅读建议:此资源以Matlab代码为核心支撑,建议读者结合算法原理部分仔细研读代码实现细节,动手运行仿真案例,深入理解适应度函数设计、非支配解集维护及环境建模的关键步骤,从而全面提升对多目标进化算法在机器人应用中的实践能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值