POJ1239 单调上升字符串(线性DP||经典的两次DP)

Description

给一个数字字符串,通过**,**分割使其称为单调递增字符串。

Input

输入多个字符串

Output

结果可能有多种,输出结果在分割尽量多的情况下,第一个数字尽可能大,相同则比较第二个,依次递推。

样例

3456
3546
3526
0001
100000101
0

Sample Output
3,4,5,6
35,46
3,5,26
0001
100,000101

思路:对字符串进行两次DP,第一次找出尽可能小的上升序列,使得最后一个数字达到最小。第二次,从后往前,使得第一个数字尽可能大。同时需要技巧判断两个区间的数字大小还有不要用截取直接比较,因为字典序。。。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
char  a[100];
bool test(int i, int j, int x, int y)
{
    int len1=j-i+1;
    int len2=y-x+1;
    while(a[i]=='0'&&i<=j)
    {
        i++;
        len1--;
    }
    while(a[x]=='0'&&x<=y)
    {
        x++;
        len2--;
    }
    if(len1>len2) return true;
    else if(len1<len2) return false;
    else
    {
        for(int k=0; k<len1; k++)
        {
            if(a[k+i]>a[x+k])
                return true;
            else if(a[k+i]<a[x+k])
                return false;
        }
    }
    return false;
}
int dp[101];
int main()
{
    while(~scanf("%s",a+1))
    {
        int n=strlen(a+1);
        if(n==1&&a[1]=='0') break;
        for(int i=1; i<=n; i++)
        {
            dp[i]=i;
            for(int j=i-1; j>=1; j--)
                if(test(j+1,i,j-dp[j]+1,j))
                {
                    dp[i]=i-j;
                    break;
                }
        }
        int t=n-dp[n]+1;
        dp[t]=dp[n];
        for(int i=n-dp[n];i>=1;i--){
            if(a[i]=='0'){
                dp[i]=dp[i+1]+1;
                continue;
            }
            for(int j=t;j>=0;j--){
                if(test(j,j+dp[j]-1,i,j-1)){
                    dp[i]=j-i;
                    break;
                }
            }
        }
        int tmp=dp[1]+1;
        for(int i=1;i<=n;i++){
            if(tmp==i){
                printf(",");
                tmp=dp[i]+i;
            }
            printf("%c",a[i]);
         }
         printf("\n");
     }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值