用顺序和链式实现了线性表,这次要用顺序和链式实现队列了。
队列:只允许在一端进行插入操作,而另一端进行删除操作的线性表。
允许插入(入队、进队)的一端称为队尾,允许删除(出队)的一端称为队头。
队列的操作特性:先进先出
队列的顺序存储结构及实现
顺序队列——队列的顺序存储结构
假溢出:当元素被插入到数组中下标最大的位置上之后,队列的空间就用尽了,尽管此时数组的低端还有空闲空间。
解决:循环队列:将存储队列的数组头尾相接。
不存在物理的循环结构,用软件方法实现。
求模:rear=(rear+1)% MAXSIZE front=(front+1) % MAZSIZE
队空:front= =rear
队满的条件:
方法一:附设一个存储队列中元素个数的变量num,当num=0时队空,当num=QueueSize时为队满;
方法二:修改队满条件,浪费一个元素空间,队满时数组中只有一个空闲单元;
方法三:设置标志flag,当front=rear且flag=0时为队空,当front=rear且flag=1时为队满。
浪费一个空间队满:(rear+1) %QueueSize==front
//循环队列类的声明:
struct Node
{
int data;
Node *next;
};
const int QueueSize=100;
template <class T>
class CirQueue{
public:
CirQueue();
~ CirQueue();
void EnQueue(T x);
T DeQueue();
T GetQueue();
bool Empty(){
if (rear==front) return true;
return false;
};
private:
T data[QueueSize];
int front, rear;
};
//入队
template <class T>
void CirQueue<T>::EnQueue(T x)
{
if ((rear+1) % QueueSize ==front) throw "上溢";
rear=(rear+1) % QueueSize;
data[rear]=x;
}
//出队
template <class T>
T CirQueue<T>::DeQueue()
{
if (rear==front) throw "下溢";
front=(front+1) % QueueSize;
return data[front];
}
//取队首
template <class T>
T CirQueue<T>::GetQueue()
{
if (rear==front) throw "下溢";
i=(front+1) % QueueSize;
return data[i];
}
//长度
template <class T>
int CirQueue<T>::GetLength()
{
if (rear==front) throw "下溢";
len=(rear-front+ QueueSize) % QueueSize;
return len;
}
队列长度
链队列——队列的链接存储结构
//链队列类的声明
struct Node
{
int data;
Node *next;
};
template <class T>
class LinkQueue
{
public:
LinkQueue();
~LinkQueue();
void EnQueue(T x);
T DeQueue();
T GetQueue();
bool Empty();
private:
Node<T> *front, *rear;
};
template <class T>
LinkQueue<T>::LinkQueue()
{
front=new Node<T>;
front->next=NULL;
rear=front;
}
//入队
template <class T>
void LinkQueue<T>::EnQueue(T x)
{
s=new Node<T>;
s->data=x;
s->next=NULL;
rear->next=s;
rear=s;
}
//出队
template <class T>
T LinkQueue<T>::DeQueue()
{
if (rear==front) throw "下溢";
p=front->next;
x=p->data;
front->next=p->next;
delete p;
if (front->next==NULL) rear=front;
return x;
}