1.动态规划的基本思想
动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。
每一个解都对应于一个值,我们希望找到具有最优值的解。
与分治法类似基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。
如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。
可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
2.设计动态规划算法的步骤:
(1)找出最优解的性质,并刻画其结构特征;
(2)递归地定义最优值(写出动态规划方程);
(3)以自底向上的方式计算出最优值;
(4)根据计算最优值时得到的信息,构造一个最优解。
步骤1~3是动态规划算法的基本步骤。
在只需要求出最优值的情形,步骤4可以省略;
若需要求出问题的一个最优解,则必须执行步骤4。
3.动态规划问题的特征
动态规划算法的有效性依赖于问题本身所具有的两个重要性质:最优子结构和重叠子问题。
(1)最优子结构:当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。
(2)重叠子问题:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解。
计算矩阵连乘积的DP算法
#include<bits/stdc++.h>
using namespace std;
#define NUM 51
int p[NUM];
int m[NUM][NUM];
int s[NUM][NUM];
void MatrixChain(int n)
{
for (int i=1; i<=n; i++) m[i][i] = 0;
for (int r=2; r<=n; r++)
for (int i=1; i<=n-r+1; i++)
{
int j=i+r-1;
//计算初值,从i处断开
m[i][j] = m[i+1][j]+p[i-1]*p[i]*p[j];
s[i][j] = i;
for (int k=i+1; k<j; k++)
{
int t = m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
if (t < m[i][j]) {m[i][j] = t; s[i][j] = k;}
}
}
}
//计算矩阵连乘积最优解的递归算法
void TraceBack(int i, int j)
{
if(i==j) cout<<i<<endl;
else
{
cout<<"(";
TraceBack(i,s[i][j]);
TraceBack(s[i][j]+1,j);
cout<<")";
}
}
//计算矩阵连乘积的递归算法
int Recurve(int i, int j)
{
if (i == j) return 0;
int u = Recurve(i, i)+Recurve(i+1,j)+p[i-1]*p[i]*p[j];
s[i][j] = i;
for (int k = i+1; k<j; k++)
{
int t = Recurve(i, k) + Recurve(k+1,j)+p[i-1]*p[k]*p[j];
if (t<u) { u = t; s[i][j] = k;}
}
m[i][j] = u;
return u;
}