几乎所有的教材和资料在介绍偏振模色散的时候都是用保偏光纤开始的。保偏光纤有快轴和慢轴,作为保偏光纤的两个本征偏振态。
本征这个词,在一些老旧的线代数学教材中经常出现。本征值就是特征值的意思。
如果我把光信号通过光纤得到光输出的这个过程抽象成数学描述的形式:
y
=
A
x
\bf y = Ax
y=Ax,其x,y分别是输入和输出光信号,通常我们会用Jones矢量的形式描述它。而A就是光纤的矩阵表示。不难理解,光纤对输入信号做了一些变换得到输出信号。以我们目前的认知水平,矩阵运算无疑是表述变换的最佳人选。
那么光纤是客观存在的,所以矩阵A 是确定的。那么
y
=
A
x
\bf y = Ax
y=Ax所代表的非齐次线性方程组所否有解呢?也就是说,我们到底能否找到输入x经有矩阵
A
\bf A
A输出y?
这个问题并不显然,如果我的输入x是一只猫,虽然猫是液体,但是它显然是不能塞进光纤的。有一点线性代数的知识就知道,我要求特征值和特征向量了。只有特征向量线性组合成的x才能通过光纤。即,只有这种形式的光,才能在光纤里传播。这就是本征偏振态,这种偏振光在光纤中的折射率就是它对应的本征值。而它们就是我们常说的模式。
由于快轴的偏振光和慢轴的偏振光的传播速度不同,所以随着传播距离的增加,两偏振光的相位差会周期性的变化
Δ
β
=
β
s
−
β
f
=
ω
c
(
n
s
−
n
f
)
=
2
π
λ
Δ
n
\bf \varDelta \beta = \beta_s-\beta_f = \frac{\omega}{c}(n_s-n_f)=\frac{2π}{λ} \varDelta n
Δβ=βs−βf=cω(ns−nf)=λ2πΔn
δ
=
Δ
β
L
=
2
π
λ
Δ
n
L
\bf \delta = \varDelta \beta L = \frac{2π}{λ} \varDelta nL
δ=ΔβL=λ2πΔnL其中
β
\beta
β是传播常数,可以看出,传播常数的差就等价于折射率
n
n
n的差值。由此就可根据传播距离计算出两个偏振态的相位差
δ
\delta
δ。
图中,入射光为45°线偏振光,随着在光纤中的传播周期在线偏振、圆偏振、椭圆偏振光之间转换。保偏光纤并不是保着偏振态一成不变。而是我能知道这个偏振态是怎么变化的。当输入的光只在快轴或者慢轴上有分量,那么它的偏振方向不会发生变化。
保偏光纤还有个拍长的概念,即
L
B
=
λ
/
Δ
n
\bf L_B=λ/\varDelta n
LB=λ/Δn,描述了偏振态周期变化的传播距离。保偏光纤中拍长的典型值
L
B
=
3
m
m
\bf L_B =3mm
LB=3mm,普通光纤的排长典型值为
L
B
=
10
m
\bf L_B =10m
LB=10m,造成这种差异的原因是,普通光纤中的双折射没有这么明显,保偏光纤中的
Δ
n
=
5.2
×
1
0
−
4
\varDelta n = 5.2 \times10^{-4}
Δn=5.2×10−4,普通光纤中的
Δ
n
=
1.6
×
1
0
−
7
\varDelta n = 1.6 \times10^{-7}
Δn=1.6×10−7。虽然这种量级的折射率差,相对于光纤纤芯和包层的折射率差小到可以忽略不记。但是却足以引起很明显的偏振态的变化和偏振模色散的影响。
保偏光纤的快慢轴是稳定不变的,而电信光纤只能抽象成多个保偏光纤小段组成的。因为他在不同位置的快慢轴方向,以及折射率值都是不一样的。
从保偏光纤中的快慢轴,我们希望推广到一个随机双折射的普通光纤中,是否也有这种正交轴的概念。沿轴入射一束偏振光(更一般的椭圆偏振光),输出仍是偏振光。答案是肯定的。一个一般的光纤中,存在一组快慢主态(Principle states of polarization, PSP),是一组正交椭圆偏振态。当输入光为Fast PSP时,输出光是一个确定的椭圆偏振光(一般与输入光的偏振状态不同);当输入光为Slow PSP时,同理。当输入任意偏振态的光时,它可以分解为两个正交的主态在光纤中传播,慢主态传播慢于快主态,反应为偏振模色散。我们常说的保偏光纤快慢轴中传播的两个线偏振态,就是快慢主态的特例。
光纤中的快轴和慢轴
于 2024-01-01 13:29:44 首次发布