图的存储方法——邻接矩阵

基本思想
图由顶点和边构成,则需要分别存储顶点和边,边又依附于点,还需存储点与边的逻辑关系。
用一个一维数组来存储图中的所有顶点。
再用一个二维数组来存储图的邻接矩阵,(邻接矩阵行列分别为第1个到第n个顶点),若两个顶点有边,则邻接矩阵 该行列 的值为1,无边则为0;
在这里插入图片描述
具体代码体现:

const int maxsize=10;
template<class T>
class Graph{
public:
	Graph(T a[],int n,int e)//构造函数,输入顶点数据,顶点个数,边的个数;
	{
		vertexnum=n;edge=e;	//点,边个数赋值;
		for(int i=0;i<vertexnum;i++){	
			vertex[i]=a[i];				//顶点数据赋值
		}
		for(int i=0;i<vertexnum;i++){	
			for(int j=0;j<vertexnum;j++){
				arc[i][j]=0;		//双重循环,初始化邻接矩阵,使矩阵元素全为0;
			}			
		}
		for(int k=0;k<edgenum;k++){		//循环边的条数次,目的是输入每条边
			int i,j;
			cin>>i>>j;		//输入每条边依附的两个顶点下标。
			arc[i][j]=1; arc[j][i]=1; //在邻接矩阵中修改这两个顶点之间的边,从0改为1;表示存在边。
		}
		
	}  
	~Graph();			//静态存储,析构函数可不写。
						//只写了构造,其余的功能没列举
private:
	T vertex[maxsize];			//一维数组存储顶点信息;
	int arc[maxsize][maxsize];	//二维数组存储邻接矩阵;
	int vertexnum;					//顶点的个数;
	int edgenum;				//边的个数;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值