LeetCode分类练习


创作来自于DataWhale组队学习活动,由于分治算法学习文档对分治算法介绍地很完美了,所以内容以搬运为主,并增加LeetCode官方的其他解题思路

分治算法介绍

分治算法思想

分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子问题逐个击破(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案。

分治算法的步骤

  • 分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);
  • 治:将这些规模更小的子问题逐个击破
  • 合:将已解决的子问题逐层合并,最终得出原问题的解;
    算法图例

分类算法适用的情况

  • 原问题的计算复杂度随着问题的规模的增加而增加。
  • 原问题能够被分解成更小的子问题。
  • 子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题。
  • 原问题分解出的子问题的解可以合并为该问题的解。

举个栗子

用分治算法应用在排序的时候的一个栗子,加深对分治算法的理解。
相关概念:

  • 有序度:表示一组数据的有序程度
  • 逆序度:表示一组数据的无序程度

一般通过计算有序对或者逆序对的个数,来表示数据的有序度或逆序度。
假设我们有 n 个数据,我们期望数据从小到大排列,那完全有序的数据的有序度就是 n ( n − 1 ) / 2 n(n-1)/2 n(n1)/2,逆序度等于 0;相反,倒序排列的数据的有序度就是 0,逆序度是 n ( n − 1 ) / 2 n(n-1)/2 n(n1)/2
Q:如何编程求出一组数据的有序对个数或者逆序对个数呢?

因为有序对个数和逆序对个数的求解方式是类似的,所以这里可以只思考逆序对个数的求解方法。

  • 方法1:
    • 拿数组里的每个数字跟它后面的数字比较,看有几个比它小的。
    • 把比它小的数字个数记作 k,通过这样的方式,把每个数字都考察一遍之后,然后对每个数字对应的 k 值求和最后得到的总和就是逆序对个数。
    • 这样操作的时间复杂度是 O ( n 2 ) O(n^2) O(n2)(需要两层循环过滤)。那有没有更加高效的处理方法呢?这里尝试套用分治的思想来求数组 A 的逆序对个数。
  • 方法2
    • 首先将数组分成前后两半 A1 和 A2,分别计算 A1 和 A2 的逆序对个数 K1 和 K2
    • 然后再计算 A1 与 A2 之间的逆序对个数 K3。那数组 A 的逆序对个数就等于 K1+K2+K3。
    • 注意使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不了降低时间复杂度的效果了。
    • 如何快速计算出两个子问题 A1 与 A2 之间的逆序对个数呢?这里就要借助归并排序算法了。(这里先回顾一下归并排序思想)**如何借助归并排序算法来解决呢?归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组。实际上,在这个合并的过程中,可以计算这两个小数组的逆序对个数了。每次合并操作,我们都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。

LeetCode实践

169.多数元素

  • 题目描述
    给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素(算法中众数的定义)。
    你可以假设数组是非空的,并且给定的数组总是存在众数。
  • 解题思路
    • 确定切分的终止条件
      直到所有的子问题都是长度为 1 的数组,停止切分。

    • 准备数据,将大问题切分为小问题
      递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回

    • 处理子问题得到子结果,并合并

      • 长度为 1 的子数组中唯一的数显然是众数,直接返回即可。
      • 如果它们的众数相同,那么显然这一段区间的众数是它们相同的值。
      • 如果他们的众数不同,比较两个众数在整个区间内出现的次数来决定该区间的众数
  • 代码
class Solution:
    def majorityElement(self, nums: List[int]) -> int:
        if not nums:
            return None

        # 确定切分的终止条件
        # 直到所有的问题都是长度为1的数组,停止切分
        if len(nums)==1:
        # 最简单的子问题:长度为 1 的子数组中唯一的数显然是众数,直接返回即可。
            return nums[0]

        # 准备数据,将大问题切分为小问题
        # 递归地将原数组二分为左右两个区间
        left=self.majorityElement(nums[:len(nums)//2])
        right=self.majorityElement(nums[len(nums)//2:])

        # 处理子问题得到子问题结果,对子结果进行合并,得到最终的结果
        # 如果它们的众数相同,那么显然这一段区间的众数是它们相同的值。
        if left==right:
            return left
        # 如果他们的众数不同,比较两个众数在整个区间内出现的次数来决定该区间的众数
        if nums.count(left)>nums.count(right):
            return left
        else:
            return right

53.最大子序和

  • 题目描述
    给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
  • 解题思路
    • 确定切分的终止条件
      直到所有的子问题都是长度为 1 的数组,停止切分。
    • 准备数据,将大问题切分为小问题
      递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回
    • 处理子问题得到子结果,并合并
      • 对与左区间:从右到左计算左边的最大子序和
      • 对与右区间:从左到右计算右边的最大子序和
      • 由于左右区间计算累加和的方向不一致,因此,左右区间直接合并相加之后就是整个区间的和,最终返回左区间的元素、右区间的元素、以及整个区间(相对子问题)和的最大值。
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        # 思路:分治
        # 确定切分的终止条件
        n=len(nums)
        if n==1:
            return nums[0]
        # 准备数据,将大问题切分为小问题
        left=self.maxSubArray(nums[:len(nums)//2])
        right=self.maxSubArray(nums[len(nums)//2:])

        # 处理子问题得到子结果
        # 从右到左计算左边的最大子序和
        max_l=nums[len(nums)//2-1]
        tmp=0

        for i in range(len(nums)//2-1,-1,-1):
            tmp+=nums[i]
            max_l=max(max_l,tmp)

        # 从左至右计算右边的最大子序和
        max_r=nums[len(nums)//2]
        tmp=0

        for i in range(len(nums)//2,len(nums),1):
            tmp+=nums[i]
            max_r=max(max_r,tmp)
        
        # 对子问题的结果进行合并
        # 返回这三个中的最大值
        return max(left,right,max_l + max_r)

50.求x的n次幂

  • 题目描述
    实现 pow(x, n) ,即计算 x 的 n 次幂函数。

  • 官方思路1:快速幂+递归

快速幂算法的本质是分治算法。举个例子,如果我们要计算 x 64 x^{64} x64,我们可以按照: x → x 2 → x 4 → x 8 → x 16 → x 32 → x 64 x \to x^2 \to x^4 \to x^8 \to x^{16} \to x^{32} \to x^{64} xx2x4x8x16x32x64的顺序,从 x开始,每次直接把上一次的结果进行平方,计算 6 次就可以得到 x 64 x^{64} x64 的值,而不需要对 x 乘 63 次x 。
再举一个例子,如果我们要计算 x 77 x^{77} x77,我们可以按照: x → x 2 → x 4 → x 9 → x 19 → x 38 → x 77 x \to x^2 \to x^4 \to x^9 \to x^{19} \to x^{38} \to x^{77} xx2x4x9x19x38x77的顺序,在这些步骤中,其中 x → x 2 x \to x^2 xx2 x 2 → x 4 x^2 \to x^4 x2x4 x 19 → x 38 x^{19} \to x^{38} x19x38,我们直接把上一次的结果进行平方,而在 x 4 → x 9 , x 9 → x 19 , x 38 → x 77 x^4 \to x^9,x^9 \to x^{19},x^{38} \to x^{77} x4x9x9x19x38x77这些步骤中,我们把上一次的结果进行平方后,还要额外乘一个 x。

直接从左到右进行推导看上去很困难,因为在每一步中,我们不知道在将上一次的结果平方之后,还需不需要额外乘 xx。但如果我们从右往左看,分治的思想就十分明显了:

  • 当我们要计算 x n x^n xn时,我们可以先递归地计算出 y = x ⌊ n / 2 ⌋ y = x^{\lfloor n/2\rfloor} y=xn/2,其中 ⌊ a ⌋ \lfloor a\rfloor a表示对 a 进行下取整;

  • 根据递归计算的结果,如果 n 为偶数,那么 $x^n = y^2;如果 n 为奇数,那么 x n = y 2 ∗ x x^n = y^2 * x xn=y2x

  • 递归的边界为 n = 0,任意数的 0 次方均为 1。
    来源:力扣官方题解(LeetCode)

  • 代码

class Solution:
    def myPow(self, x: float, n: int) -> float:
        # 思路1:快速幂+递归
        # 处理n小于0的情况
        if n<0:
            x=1/x
            n=-n
        # 确定不断切分的终止条件
        if n==0:
            return 1

        # 准备数据,将大问题切分为小问题
        p=self.myPow(x,n//2)

        # 处理小问题,得到子问题结果
        # 如果n除以2有余数1,则需要多乘一个x
        if n%2==1:
            return p*p*x
        else:
            return p*p
  • 复杂度分析:

    • 时间复杂度: O ( l o g n ) O(logn) O(logn),即为递归的层数。
    • 空间复杂度: O ( l o g n ) O(logn) O(logn),即为递归的层数。这是由于递归的函数调用会使用栈空间。
  • 递归执行逻辑求2的9次方的执行逻辑

  • 官方思路2:快速幂+迭代
    由于递归需要使用额外的栈空间,我们试着将递归转写为迭代我们还是以 x 77 x^{77} x77作为例子:
    x → x 2 → x 4 → + x 9 → + x 19 → x 38 → + x 77 x \to x^2 \to x^4 \to^+ x^9 \to^+ x^{19} \to x^{38} \to^+ x^{77} xx2x4+x9+x19x38+x77
    把需要额外乘 x的步骤打上了 ++ 标记。可以发现:

  • x 38 → + x 77 x^{38} \to^+ x^{77} x38+x77中额外乘的 x 在 x 77 x^{77} x77中贡献了 x;

  • x 9 → + x 19 x^9 \to^+ x^{19} x9+x19中额外乘的 x 在之后被平方了 2 次,因此在 x 77 x^{77} x77中贡献了 x 4 x^4 x4

  • x 4 → + x 9 x^4 \to^+ x^9 x4+x9中额外乘的 x在之后被平方了 3 次,因此在 x 77 x^{77} x77中贡献了 x 8 x^8 x8

  • 最初的 x 在之后被平方了 66 次,因此在 x 77 x^{77} x77中贡献了 x 64 x^{64} x64

我们把这些贡献相乘, x ∗ x 4 ∗ x 8 ∗ x 64 x * x^4 * x^8 * x^{64} xx4x8x64 恰好等于 x 77 x^{77} x77。而这些贡献的指数部分又是什么呢?它们都是 2 的幂次,这是因为每个额外乘的 x 在之后都会被平方若干次。而这些指数 1,4,8 和 64,恰好就对应了 77的二进制表(1001101)_2
中的每个 1!
因此我们借助整数的二进制拆分,就可以得到迭代计算的方法,一般地,如果整数 n 的二进制拆分为

n = 2 i 0 + 2 i 1 + ⋯ + 2 i k n = 2^{i_0} + 2^{i_1} + \cdots + 2^{i_k} n=2i0+2i1++2ik

那么

x n = x 2 i 0 ∗ x 2 i 1 ∗ ⋯ ∗ x 2 i k x^n = x^{2^{i_0}} * x^{2^{i_1}} * \cdots * x^{2^{i_k}} xn=x2i0x2i1x2ik

这样以来,我们从 x 开始不断地进行平方,得到 x 2 , x 4 , x 8 , x 16 , ⋯ x^2, x^4, x^8, x^{16}, \cdots x2,x4,x8,x16,如果 n 的第 k 个(从右往左,从 0 开始计数)二进制位为 1,那么我们就将对应的贡献 x 2 k x^{2^k} x2k 计入答案。
来源:力扣(LeetCode)

  • 代码
class Solution:
    def myPow(self, x: float, n: int) -> float:
        def quickMul(N):
            ans = 1.0
            # 贡献的初始值为 x
            x_contribute = x
            # 在对 N 进行二进制拆分的同时计算答案
            while N > 0:
                if N % 2 == 1:
                    # 如果 N 二进制表示的最低位为 1,那么需要计入贡献
                    ans *= x_contribute
                # 将贡献不断地平方
                x_contribute *= x_contribute
                # 舍弃 N 二进制表示的最低位,这样我们每次只要判断最低位即可
                N //= 2
            return ans
        
        return quickMul(n) if n >= 0 else 1.0 / quickMul(-n)
  • 时间复杂度:

    • 时间复杂度: O ( l o g n ) O(logn) O(logn),即为对 n 进行二进制拆分的时间复杂度。
    • 空间复杂度: O ( 1 ) O(1) O(1)

    时间有限,主要自己太菜,所以只最后一题写了官方的思路,开始两道题直接写的学习文档上的思路,没有写LeetCode官方思路,要打卡了

参考资料:

分治算法学习文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值