LeetCode分类练习

动态规划算法介绍

主要思想

动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
若要解一个给定问题,我们需要解其不同部分(即子问题),再根据子问题的解以得出原问题的解。动态规划往往用于优化递归问题,例如斐波那契数列,如果运用递归的方式来求解会重复计算很多相同的子问题,利用动态规划的思想可以减少计算量。
动态规划法仅仅解决每个子问题一次,具有天然剪枝的功能,从而减少计算量,一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。

动态规划模板步骤:

  • 确定动态规划状态
  • 写出状态转移方程(画出状态转移表)
  • 考虑初始化条件
  • 考虑输出状态
  • 考虑对时间,空间复杂度的优化(Bonus)

LeetCode实践

300.最长上升子序列

  • 题目描述:
    给定一个无序的整数数组,找到其中最长上升子序列的长度
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4
  • 动态规划思路:
    • 确定动态规划状态
      该题目可以直接用一个一维数组 dp 来存储转移状态, dp[i] 可以定义为以 nums[i] 这个数结尾的最长递增子序列的长度。举个实际例子,比如在 nums[10,9,2,5,3,7,101,18] 中, dp[0] 表示数字10的最长递增子序列长度,那就是本身,所以为1,对于 dp[5] 对应的数字7来说的最长递增子序列是 [2,5,7] (或者 [2,3,7] )所以 dp[5]=3 。
    • 写出状态转移方程
      dp[i]是如何计算的?首先,在dp[i]之前,dp[0,1,2,……i-1]已经求出,分别代表以nums[0,1,2,……i-1]结尾的最长递增子序列,dp[i]的计算要保证两个条件:①dp[j] 0=<j<i的末尾元素nums[j]要小于num[i],这样加上nums[i]后可以保证还是递增的。②dp[j] 0=<j<i 中,要取满足条件①中最大的dp[j]对应的子序列与nums[i]相连,这样才能保证加1后是最大的递增序列。所以可以写出状态转移方程:
      dp[i]=max(dp[j])+1,其中0=<j<i,且nums[j]<nums[i]
    • 初始化条件
    • 对于本问题,子序列最少也是自己,所以长度为1,这样我们就可以方便的把所有的 dp 初始化为1,再考虑长度问题,由于 dp[i] 代表的是 nums[i] 的最长子序列长度,所以并不需要加1
    • 考虑输出状态
      主要有以下三种形式,对于具体问题,我们一定要想清楚到底dp数组里存储的是哪些值,最后我们需要的是数组中的哪些值:
      • 返回dp数组中最后一个值作为输出,一般对应二维dp问题。
      • 返回dp数组中最大的那个数字,一般对应记录最大值问题。
      • 返回保存的最大值,一般是 Maxval=max(Maxval,dp[i]) 这样的形式。

本例中dp[i]存储的以num[i]这个元素结尾的最长递增子序列,数组nums本身并不是有序的,所以dp[i]的大小和i的大小没有关系,所以需要输出的是:max(dp)

  • 第五步:考虑对时间,空间复杂度的优化
    我们看到,之前方法遍历dp列表需要 ,计算每个 dp[i] 需要 的时间,所以总复杂度是前面遍历dp列表的时间复杂度肯定无法降低了,但是我们看后面在每轮遍历 [0,i] 的 dp[i] 元素的时间复杂度可以考虑设计状态定义,使得整个dp为一个排序列表,这样我们自然想到了可以利用二分法来把时间复杂度降到了 N l o g N NlogN NlogN,可以参考LeetCode题解中的动态规划+二分法。

  • 代码:

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        # 思路:动态规划
        # 对于空数组
        if not nums:
            return 0
        dp=[] # 存放最大上升子序列的长度
        for i in range(len(nums)): # 当i 为0 时 for j in range(0): 不执行循环内的语句
            dp.append(1)
            for j in range(i):
                if nums[i]>nums[j]:
                    dp[i]=max(dp[i],dp[j]+1)
        return max(dp)
  • 复杂度
    • 时间复杂度: O ( n 2 ) O(n^2) O(n2),其中 n 为数组nums 的长度。动态规划的状态数为 n,计算状态 dp[i] 时,需要 O ( n ) O(n) O(n)的时间遍历dp[0…i−1] 的所有状态,所以总时间复杂度为 O ( n 2 ) O(n^2) O(n2)
    • 空间复杂度: O ( n ) O(n) O(n),需要额外使用长度为 n 的 dp 数组。

674 最长连续递增序列

  • 题目描述:
    给定一个未经排序的整数数组,找到最长且连续的的递增序列
示例 1:
输入: [1,3,5,4,7]
输出: 3
解释: 最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为57在原数组里被4隔开。
  • 思路及代码
class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        # 思路:动态规划
        # 数组为空
        if not nums:
            return 0
        # 1. 确定状态:dp[i]用于存放以nums[i]结束的最长连续递增序列
        # 3. 初始状态:自身即为一个连续递增序列,所以初始状态均为1
        dp=[1]*len(nums)
        for i in range(1,len(nums)):
            # 2. 状态转移方程
            # 状态转移的条件:连续且递增
            if nums[i]>nums[i-1]:
                dp[i]=dp[i-1]+1
            # 不满足条件时,状态不变
            else:
                dp[i]=1
        # 4. 输出:
        return max(dp)
  • 复杂度:
    • 时间复杂度:一次遍历便可求出dp[i],复杂度为 O ( N ) O(N) O(N)
    • 空间复杂度: O ( N ) O(N) O(N),需要额为长度为 N N N的数组

5 最长回文子串

  • 题目描述:
    给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。
  • 思路及代码:
class Solution:
    def longestPalindrome(self, s: str) -> str:
        length=len(s)
        # 边界条件:字符串值只包含一个字符
        if length<2:
            return s
        
        # 1. 确定状态:dp[i][j]代表字符串s的子串s[i][j]是否为回文子串
        # 3. 给定初始条件:初始状态均为Fasle
        dp=[[False for _ in range(length)]for _ in range(length)]


        max_len=1
        start=0 # 记录回文子串的起始位置
        # 2. 状态转移方程:
        # 遍历所有的状态:这里没有遍历对角线的状态,因为对角线的状态肯定为True
        for j in range(1,length):
            for i in range(j):
                # 状态转移条件:条件1,回文,即首尾相等
                if s[i]==s[j]:
                    # 条件2:当首尾之间只有一个字符时,s[i][j]必为回文字符串
                    if j-i<3:
                        dp[i][j]=True
                    # 如果不满足条件2,则是否回文由s[i+1][j-1]决定
                    else:
                        # 注意:这里dp[i+1][j-1]的状态在该次循环之前已经计算过了
                        dp[i][j]=dp[i+1][j-1]
                    
                    # dp[i][j]只能确定s[i:j]是否为回文子串,不是题目的直接要求
                    # 如果是回文子串,还需要判断是否为最长:
                if dp[i][j]:
                    cur_len=j-i+1
                    # 如果当前回文子串最长,记录下当前回文子串的长度和起始位置
                    if cur_len>max_len:
                        start=i
                        max_len=cur_len
        
        # 4. 输出
        return s[start:start+max_len]
  • 复杂度:
    • 时间复杂度: O ( N 2 ) O(N^2) O(N2),其中 n 是字符串的长度。动态规划的状态总数为 O ( N 2 ) O(N^2) O(N2),对于每个状态,我们需要转移的时间为 O ( 1 ) O(1) O(1)
    • 空间复杂度: O ( N 2 ) O(N^2) O(N2),即存储动态规划状态需要的空间。

516 最长回文子序列

  • 题目描述:
    给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
示例 1:
输入:
"bbbab"
输出:
4

区分子串和子序列,子串是连续的,子序列可以不连续,但要保持元素的顺序关系

  • 思路及代码:
class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        # 1.确定状态:dp[i][j]代表s[i][j]最大回文子序列的长度
        n=len(s)
        dp=[[0]*n for _ in range(n)]

        # 3. 边界条件:
        # 当i=j时,及只包含一个字符,dp[i][j]=1
        for i in range(n):
            dp[i][i]=1
        # 当i>j是,不存在这样的状态,记为0

        # 遍历各状态:要根据状态方程,确定遍历的顺序
        # 对列按顺序遍历,行按逆序遍历,且i<j
        for i in range(n-2,-1,-1):
            for j in range (i+1,n):
                # 2. 状态转移方程
                if s[i]==s[j]:
                    # 状态方程左边i,右边i+1,所以i应当逆序遍历
                    # 状态方程左边j,右边j-1,所以j应当顺序遍历
                    dp[i][j]=dp[i+1][j-1]+2
                else:
                    dp[i][j]=max(dp[i][j-1],dp[i+1][j])
        # 4 确定输出:根据状态转移确定输出
        return dp[0][n-1]
  • 复杂度:
    • 时间复杂度: O ( N 2 ) O(N^2) O(N2),其中 n 是字符串的长度。动态规划的状态总数为 O ( N 2 ) O(N^2) O(N2),对于每个状态,我们需要转移的时间为 O ( 1 ) O(1) O(1)
    • 空间复杂度: O ( N 2 ) O(N^2) O(N2),即存储动态规划状态需要的空间。

72 编辑距离

  • 题目描述:
    给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
    你可以对一个单词进行如下三种操作:
    插入一个字符
    删除一个字符
    替换一个字符
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse ('h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
  • 思路及代码:
def minDistance(self, word1, word2):
	#m,n 表示两个字符串的长度
	m=len(word1)
	n=len(word2)
	#构建二维数组来存储子问题
	dp=[[0 for _ in range(n+1)] for _ in range(m+1)]
	#考虑边界条件,第一行和第一列的条件
	for i in range(n+1):
	dp[0][i]=i #对于第一行,每次操作都是前一次操作基础上增加一个单位的操作
	for j in range(m+1):
	dp[j][0]=j #对于第一列也一样,所以应该是1,2,3,4,5...
	for i in range(1,m+1): #对其他情况进行填充
	for j in range(1,n+1):
	if word1[i-1]==word2[j-1]: #当最后一个字符相等的时候,就不会产生任
	何操作代价,所以与dp[i-1][j-1]一样
	dp[i][j]=dp[i-1][j-1]
	else:
	dp[i][j]=min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1 #分别
	对应删除,添加和替换操作
	return dp[-1][-1] #返回最终状态就是所求最小的编辑距离
  • 复杂度:
    • 时间复杂度 : O ( m n ) O(mn) O(mn),其中 m 为 word1 的长度,n 为 word2 的长度。
    • 空间复杂度 : O ( m n ) O(mn) O(mn),我们需要大小为 O ( m n ) O(mn) O(mn) 的 数组来记录状态值。

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值