常微分方程:欧拉方法、龙格库塔方法 matlab实现

常微分方程 数值解法
h为步长;
f为传入函数

欧拉方法

function [x, y] = Euler(x0, x1, y0, h, f)
n = floor((x1 - x0) / h);
x = zeros(n + 1, 1);
y = zeros(n + 1, 1);
x(1) = x0;
y(1) = y0;
for i = 1 : n
    x(i + 1) = x(i) + h;
    y(i + 1) = y(i) + h * f(x(i),y(i));
end
end

三阶龙格库塔方法

function [x, y] = runge3(x0, x1, y0, h, fun)
n = floor((x1 - x0) / h);
x = zeros(n + 1, 1);
y = zeros(n + 1, 1);
x(1) = x0;
y(1) = y0;
for i = 1:n
    x(i + 1) = x(i) + h;
    k1 = fun(x(i), y(i));
    k2 = fun(x(i) + h/2, y(i) + k1*h/2);
    k3 = fun(x(i) + h, y(i) - h*k1 + k2*h*2);
    y(i + 1) = y(i) + (k1 + 4*k2 + k3)*h/6;
end
end

四阶龙格库塔法


                
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值