字符串和多维数组

字符串(串):零个或多个字符组成的有限序列

串长度:串中所包含的字符个数

空串:长度为0的串,记为:" " 

非空串:S=" s1 s2 …… sn "(S是串名,双引号是定界符,双引号引起来的部分是串值 ,si(1≤in是一个任意字符。)

子串:串中任意个连续的字符组成的子序列。

主串:包含子串的串。

子串的位置:子串的第一个字符在主串中的序号。

串的存储结构

字符串是数据元素为单个字符的线性表,一般采用顺序结构存储,即用数组存储串的字符序列。

一般有三种方法: 

(1)用一个变量来表示串的实际长度。

0          1         2      3        4         5     6  … …........Max-1

(2)用数组的0号单元存放串的长度,从1号单元开始存放串值。

(3)在串尾存储一个不会在串中出现的特殊字符作为串的终结符,表示串的结尾

 例如在C/C++中用'\0'表示串的结束,在ASCII字符集中对应空字符NULL,数值为0,在使用过程中要为其分配内存空间,但不计入字符串长度。

模式匹配:

给定主串S="s1s2sn"和模式T="t1t2tm",在S中寻找T 的过程称为模式匹配,T称为模式。

BF算法:

从主串S的第0个字符开始和模式T 的第0个字符进行比较, 若相等,则继续比较两者的后续字符; 否则,从主串S的第1个字符开始和模式T 的第0个字符进行比较,重复上述过程,直到T 中的字符全部比较完毕,则说明本趟匹配成功;或S中字符全部比较完,则说明匹配失败

1. 在串S和串T中设比较的起始下标ij;

2. 循环直到ST的所有字符均比较完;

    2.1 如果S[i]==T[j],继续比较ST的下一个字符;

    2.2 否则,将ij回溯(i=i-j+1,j=0),准备下一趟比较;

3. 如果T中所有字符均比较完,则匹配成功,返回匹配的起始比较下标(i-j);否则,匹配失败,返回-1

int BF(char S[ ], char T[ ])

{

     i=0; j=0;  

    while (i<S.Length()&&j<T.length())

    {

         if (S[i]==T[j]) {

             i++;   j++;

         } 

         else {

             i=i-j+1;    j=0;

         }  

     }

     if (j>=T.length())  return (i-j);  

     else return -1;

}

设串S长度为n,串T长度为m,时间复杂度为:

Pi 表示在第i个位置上匹配成功的概率,Pi=1/(n-m+1)。

KMP算法

主串不回溯,模式就需要向右滑动一段距离。(i不移动,j>=0的位置继续进行下一次的比较),

k=next[j-1](由next[]的 定义可以知道:t0t1…tk-1= tj-k…tj-3tj-2)

 如果t[k]==t[j-1]或k==-1(不存在长度相同的前缀子串和左子串 )则t0t1…tk-1tk= tj-k…tj-3tj-2tj-1,因此 next[j]=k+1,next[j]计算结束。否则, 查找t0t1…tk的最长左子串,  k=next[k],转 1 继续执行。

       int KMP_FindPat(char *s, char *t,int *next){

 int i=0,j=0,k;

  while(s[i]!='\0' && t[j]!='\0')  {

  if(j==-1 || s[i]==t[j])  {

                 i++;

                 j++;

           }

  else

        j=next[j];

  }

  if(t[j]=='\0')

  return i-j;

  else

  return -1;

}

时间复杂性:O(n+m)

数组:

数组是由一组类型相同的数据元素构成的有序集合,每个元素受n(n≥1)个线性关系的约束,并称该数组为 n 维数组。

数组操作:

   ⑴存取:给定一组下标,读出对应的数组元素

 (2)修改:给定一组下标,存储或修改与其相对应的数组元素。

存取和修改本质上是一种操作,就是寻址。

数组没有插入和删除操作,所以采用顺序存储。

数组的存储结构与寻址——二维数组:

常用的映射方法有两种:

优先:先行后列,先存储行号较小的元素,行号相同者先存储列号较小的元素。

优先:先列后行,先存储列号较小的元素,列号相同者先存储行号较小的元素。

按行优先:

aij前面的元素个数

=整行数×每行元素个数+本行中aij前面的元素个数

=(i -l1)×(h2 -l2+1)(j -l2)

列优先存储的寻址方法与此类似。

矩阵的压缩存储:

⑴ 为多个值相同的元素只分配一个存储空间;

元素不分配存储空间。

对称矩阵:特点:aij=aji

对称矩阵只存储下三角部分的元素。

aij在一维数组中的序号= i×(i-1)/2+ j

aij在一维数组中的下标:k= i×(i-1)/2+ j-1

三角矩阵

3    4  8  1     0

c 2  9  4  6

c c 1    5     7

c c  c  0  8

c c  c  c     7

矩阵中任一元素aij数组中的下标ki、j的对应关系:

对角矩阵:所有非零元素都集中在以主对角线为中心的带状区域中,除了主对角线和它的上下方若干条对角线的元素外,所有其他元素都为零

a11   a12    0   0   0

a21   a22  a23      0   0

0     a32   a33 a34   0

0     0     a43 a44   a45

0  0   0  a54   a55

存储方法:

(1)二维数组法:

(2)用一个一维的数组存储对角线上的非零元素

 a11   a12   a21   a22   a23   a32  a33     a34      ann-1        ann 

稀疏矩阵的压缩存储

三元组表将稀疏矩阵的非零元素对应的三元组所构成的集合,按行优先的顺序排列成一个线性表。

三元(行,列,元素值)。

const int MaxTerm=100;

    template <class T>

    struct SparseMatrix

    {

       T data[MaxTerm];   //存储非零元素

       int mu, nu, tu;           //行数,列数,非零元个数

    };

template<class T>

class OLNode

{

  public:

  int row,col;

  T element;

  OLNode<T>* right,*down;

public:

  OLNode(){right=NULL;down=NULL;};

};

  广义表(列表):  n ( ³ 0 )个表元素组成的有限序列,记作:LS = (a0, a1, a2, …, an-1)

    LS是表名,ai是表元素,它可以是表 (称为子表),可以是数据元素(称为原子)n为表的长度。n = 0 的广义表为空表。

template <class T>

struct GLNode

   Elemtag tag;

   union    {

      T data;

      struct

      {

          GLNode *hp, *tp;

       } ptr;                           

    };

};

例如:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值