字符串(串):零个或多个字符组成的有限序列
串长度:串中所包含的字符个数
空串:长度为0的串,记为:" "
非空串:S=" s1 s2 …… sn "(S是串名,双引号是定界符,双引号引起来的部分是串值 ,si(1≤i≤n)是一个任意字符。)
子串:串中任意个连续的字符组成的子序列。
主串:包含子串的串。
子串的位置:子串的第一个字符在主串中的序号。
串的存储结构 :
字符串是数据元素为单个字符的线性表,一般采用顺序结构存储,即用数组存储串的字符序列。
一般有三种方法:
(1)用一个变量来表示串的实际长度。
0 1 2 3 4 5 6 … …........Max-1
(2)用数组的0号单元存放串的长度,从1号单元开始存放串值。
(3)在串尾存储一个不会在串中出现的特殊字符作为串的终结符,表示串的结尾
例如在C/C++中用'\0'表示串的结束,在ASCII字符集中对应空字符NULL,数值为0,在使用过程中要为其分配内存空间,但不计入字符串长度。
模式匹配:
给定主串S="s1s2…sn"和模式T="t1t2…tm",在S中寻找T 的过程称为模式匹配,T称为模式。
BF算法:
从主串S的第0个字符开始和模式T 的第0个字符进行比较, 若相等,则继续比较两者的后续字符; 否则,从主串S的第1个字符开始和模式T 的第0个字符进行比较,重复上述过程,直到T 中的字符全部比较完毕,则说明本趟匹配成功;或S中字符全部比较完,则说明匹配失败。
1. 在串S和串T中设比较的起始下标i和j;
2. 循环直到S或T的所有字符均比较完;
2.1 如果S[i]==T[j],继续比较S和T的下一个字符;
2.2 否则,将i和j回溯(i=i-j+1,j=0),准备下一趟比较;
3. 如果T中所有字符均比较完,则匹配成功,返回匹配的起始比较下标(i-j);否则,匹配失败,返回-1
int BF(char S[ ], char T[ ])
{
i=0; j=0;
while (i<S.Length()&&j<T.length())
{
if (S[i]==T[j]) {
i++; j++;
}
else {
i=i-j+1; j=0;
}
}
if (j>=T.length()) return (i-j);
else return -1;
}
设串S长度为n,串T长度为m,时间复杂度为:
Pi 表示在第i个位置上匹配成功的概率,Pi=1/(n-m+1)。
KMP算法 :
主串不回溯,模式就需要向右滑动一段距离。(i不移动,j>=0的位置继续进行下一次的比较),
k=next[j-1](由next[]的 定义可以知道:t0t1…tk-1= tj-k…tj-3tj-2)
如果t[k]==t[j-1]或k==-1(不存在长度相同的前缀子串和左子串 )则t0t1…tk-1tk= tj-k…tj-3tj-2tj-1,因此 next[j]=k+1,next[j]计算结束。否则, 查找t0t1…tk的最长左子串, k=next[k],转 1 继续执行。
int KMP_FindPat(char *s, char *t,int *next){
int i=0,j=0,k;
while(s[i]!='\0' && t[j]!='\0') {
if(j==-1 || s[i]==t[j]) {
i++;
j++;
}
else
j=next[j];
}
if(t[j]=='\0')
return i-j;
else
return -1;
}
•时间复杂性:O(n+m)
数组:
数组是由一组类型相同的数据元素构成的有序集合,每个元素受n(n≥1)个线性关系的约束,并称该数组为 n 维数组。
数组操作:
⑴存取:给定一组下标,读出对应的数组元素
(2)修改:给定一组下标,存储或修改与其相对应的数组元素。
存取和修改本质上是一种操作,就是寻址。
数组没有插入和删除操作,所以采用顺序存储。
数组的存储结构与寻址——二维数组:
常用的映射方法有两种:
按行优先:先行后列,先存储行号较小的元素,行号相同者先存储列号较小的元素。
按列优先:先列后行,先存储列号较小的元素,列号相同者先存储行号较小的元素。
按行优先:
aij前面的元素个数
=整行数×每行元素个数+本行中aij前面的元素个数
=(i -l1)×(h2 -l2+1)+(j -l2)
按列优先存储的寻址方法与此类似。
矩阵的压缩存储:
⑴ 为多个值相同的元素只分配一个存储空间;
⑵ 对零元素不分配存储空间。
对称矩阵:特点:aij=aji
对称矩阵只存储下三角部分的元素。
aij在一维数组中的序号= i×(i-1)/2+ j
aij在一维数组中的下标:k= i×(i-1)/2+ j-1
三角矩阵 :
3 4 8 1 0
c 2 9 4 6
c c 1 5 7
c c c 0 8
c c c c 7
矩阵中任一元素aij在数组中的下标k与i、j的对应关系:
对角矩阵:所有非零元素都集中在以主对角线为中心的带状区域中,除了主对角线和它的上下方若干条对角线的元素外,所有其他元素都为零。
a11 a12 0 0 0
a21 a22 a23 0 0
0 a32 a33 a34 0
0 0 a43 a44 a45
0 0 0 a54 a55
存储方法:
(1)二维数组法:
(2)用一个一维的数组存储对角线上的非零元素
a11 a12 a21 a22 a23 a32 a33 a34 … ann-1 ann
稀疏矩阵的压缩存储 :
三元组表:将稀疏矩阵的非零元素对应的三元组所构成的集合,按行优先的顺序排列成一个线性表。
三元(行,列,元素值)。
const int MaxTerm=100;
template <class T>
struct SparseMatrix
{
T data[MaxTerm]; //存储非零元素
int mu, nu, tu; //行数,列数,非零元个数
};
template<class T>
class OLNode
{
public:
int row,col;
T element;
OLNode<T>* right,*down;
public:
OLNode(){right=NULL;down=NULL;};
};
广义表(列表): n ( ³ 0 )个表元素组成的有限序列,记作:LS = (a0, a1, a2, …, an-1)
LS是表名,ai是表元素,它可以是表 (称为子表),可以是数据元素(称为原子)。n为表的长度。n = 0 的广义表为空表。
template <class T>
struct GLNode {
Elemtag tag;
union {
T data;
struct
{
GLNode *hp, *tp;
} ptr;
};
};
例如: