图的定义:

图是由顶点有穷非空集合和顶点之间的集合组成,通常表示为: G=(VE)

其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。

在线性表中,元素个数可以为零,称为空表;

在树中,结点个数可以为零,称为空树;

在图中,顶点个数不能为零,但可以没有边。

 

若顶点vivj之间的边没有方向,则称这条边为无向边,表示为(vi,vj)

如果图的任意两个顶点之间的边都是无向边,则称该图为无向图

若从顶点vivj的边有方向,则称这条边为有向边,表示为<vi,vj>

如果图的任意两个顶点之间的边都是有向边,则称该图为有向图

简单图:在图中,若不存在顶点到其自身的边,且同一条边不重复出现

无向完全图:在无向图中,如果任意两个顶点之间都存在则称该图为无向完全图。

有向完全图:在有向图中,如果任意两个顶点之间都存在方向相反的两条弧,则称该图为有向完全图。  

 

邻接、依附:

无向图中,对于任意两个顶点vi和顶点vj若存在边(vivj),则称顶点vi和顶点vj互为邻接点,同时称边(vivj)依附于顶点vi和顶点vj

有向图中,对于任意两个顶点vi和顶点vj若存在弧<vivj>,则称顶点vi邻接到顶点vj顶点vj邻接自顶点vi同时称弧<vivj>依附于顶点vi和顶点vj

 

在线性结构中,数据元素之间仅具有线性关系;

在树结构中,结点之间具有层次关系;

在图结构中,任意两个顶点之间都可能有关系。

 

含有n个顶点的无向完全图有n×(n-1)/2条边。

含有n个顶点的有向完全图有n×(n-1)条边

 

稀疏图:称边数很少的图为稀疏图;

稠密图:称边数很多的图为稠密图。

顶点的度:无向图中,顶点v是指依附于该顶点的边数,通常记为TD (v)。

顶点的入度:有向图中,顶点v入度是指以该顶点为弧头的弧的数目,记为ID (v)

顶点出度:有向图中,顶点v出度是指以该顶点为弧尾的弧的数目,记为OD (v)

 

在无向图中,度的总数等于边数的二倍

在有向图中,入度等于出度等于边数

 

图的基本术语

权:是指对边赋予的有意义的数值量。

网:边上带权的图,也称网图。

路径:在无向图G=(V, E)中,从顶点vp到顶点vq之间的路径是一个顶点序列(vp=vi0,vi1,vi2, …, vim=vq),其中,(vij-1,vij)∈E(1≤jm)。G是有向图,则路径也是有方向的,顶点序列满足<vij-1,vij>∈E。(一般情况下,图中的路径不惟一

路径长度:

非带权图——路径上边的个数

带权图——路径上各边的权之和

回路(环):第一个顶点和最后一个顶点相同的路径。

简单路径:序列中顶点不重复出现的路径。

简单回路(简单环):除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路。

子图:若图G=(VE),G'=(V'E'),如果V'ÍV E' Í E则称图G'G的子图。

连通图:在无向图中,如果从一个顶点vi到另一个顶点vj(ij)有路径,则称顶点vivj是连通的。如果图中任意两个顶点都是连通的,则称该图是连通图。

连通分量:非连通图的极大连通子图称为连通分量。

强连通图:在有向图中,对图中任意一对顶点vivj (ij),若从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称该有向图是强连通图。

强连通分量:非强连通图的极大强连通子图。

生成树:n个顶点的连通图G的生成树是包含G全部顶点的一个极小连通子图。

生成森林:在非连通图中,由每个连通分量都可以得到一棵生成树,这些连通分量的生成树就组成了一个非连通图的生成森林

 

图的遍历操作

图的遍历是从图中一顶点出发,对图中所有顶点访问一次且仅访问一次。

遍历的起始顶点:从编号小的顶点开始

因图中可能存在回路,某些顶点可能会被重复访问,为避免遍历不会因回路而陷入死循环附设访问标志数组visited[n]

在图中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,如何选取下一个要访问的顶点?

解决方案:深度优先遍历和广度优先遍历。

 

深度优先遍历DFSDepth First Search

基本思想

⑴ 访问顶点v

v的未被访问的邻接点中选取一个顶点ww出发进行深度优先遍历;

重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。

 广度优先遍历BFSBroad First Search FIFO: First In First Out

基本思想

⑴ 访问顶点v

依次访问v的各个未被访问的邻接点v1, v2, …, vk

分别从v1v2,…,vk出发依次访问它们未被访问的邻接点,并使“被访问顶点的邻接点”于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。

 

顺序存储结构存储图(邻接矩阵(数组表示法))

基本思想:

用一个一维数组存储图中顶点的信息

用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。

无向图的邻接矩阵的特点:主对角线为 0 且一定是对称矩阵。

有向图的邻接矩阵不一定不对称:例如有向完全图。

 

邻接矩阵存储无向图的类

const int MaxSize=10;

template <class T>

class Mgraph{

   public:

      MGraph(T a[ ], int n, int e );  

       ~MGraph( )

       void DFSTraverse(int v);

       void BFSTraverse(int v);

        ……

   private:

       T vertex[MaxSize];

       int arc[MaxSize][MaxSize];

       int vertexNum, arcNum;

};

邻接矩阵中图的基本操作——构造函数MGraph(T a[ ], int n, int e );

1. 确定图的顶点个数和边的个数;

2. 输入顶点信息存储在一维数组vertex中;

3. 初始化邻接矩阵;

4. 依次输入每条边存储在邻接矩阵arc中;

     4.1 输入边依附的两个顶点的序号i, j;

     4.2 将邻接矩阵的第i行第j列的元素值置为1;

     4.3 将邻接矩阵的第j行第i列的元素值置为1;

template <class T>

MGraph::MGraph(T a[ ], int n, int e) {

    vertexNum=n; arcNum=e;

    for (i=0; i<vertexNum; i++)

        vertex[i]=a[i];

    for (i=0; i<vertexNum; i++)    //初始化邻接矩阵

     for (j=0; j<vertexNum; j++)

           arc[i][j]=0;            

    for (k=0; k<arcNum; k++) {

        cin>>i>>j;     //边依附的两个顶点的序号

        arc[i][j]=1;  arc[j][i]=1;  //置有边标志   

    }

}

邻接矩阵中图的基本操作——深度优先遍历

int visited[MaxSize];

template <class T>

void MGraph::DFSTraverse(int v) 

{

     cout<<vertex[v]; visited [v]=1;

     for (j=0; j<vertexNum; j++)

         if (arc[v][j]==1 && visited[j]==0)

           DFSTraverse( j );

}

邻接矩阵中图的基本操作——广度优先遍历

int visited[MaxSize];

template <class T>

void MGraph::BFSTraverse(int v){    

    front=rear=-1;   //假设采用顺序队列且不会发生溢出

   int Q[MaxSize]; cout<<vertex[v]; visited[v]=1;  Q[++rear]=v;

    while (front!=rear)    {

         v=Q[++front];  

         for (j=0; j<vertexNum; j++)

            if (arc[v][j]==1 && visited[j]==0 ) {

                  cout<<vertex[j]; visited[j]=1; Q[++rear]=j;

            }

      }

}

 

链式存储结构存储图(邻接表)

邻接表存储的基本思想:对于图的每个顶点vi将所有邻接于vi的顶点链成一个单链表,称为顶点vi边表(对于有向图则称为出边表)

所有边表的头指针和存储顶点信息的一维数组构成了顶点表

邻接表有两种结点结构:顶点表结点和边表结点

         顶点表                                                                                             边   表

vertex数据域,存放顶点信息。

firstedge指针域,指向边表中第一个结点。

adjvex邻接点域,边的终点在顶点表中的下标。

next指针域,指向边表中的下一个结点。

定义邻接表的结点

struct ArcNode

{  

      int adjvex;

      ArcNode *next;

};

template <class T>

struct VertexNode

{

      T vertex;

      ArcNode *firstedge;

};

邻接表存储有向图的类

const int MaxSize=10;    //图的最大顶点数

template <class T>

class ALGraph

{   

   public:

       ALGraph(T a[ ], int n, int e);  

       ~ALGraph;   

       void DFSTraverse(int v);     

       void BFSTraverse(int v);     

   ………

  private:

       VertexNode adjlist[MaxSize];  

       int vertexNum, arcNum;      

};

邻接表中图的基本操作——构造函数

1. 确定图的顶点个数和边的个数;

2. 输入顶点信息,初始化该顶点的边表;

3. 依次输入边的信息并存储在边表中;

     3.1  输入边所依附的两个顶点的序号ij;

     3.2  生成邻接点序号为j的边表结点s;

   3.3 将结点s插入到第i个边表的头部;

template <class T>

ALGraph::ALGraph(T a[ ], int n, int e)

{  

    vertexNum=n; arcNum=e;

    for (i=0; i<vertexNum; i++)  

    {

       adjlist[i].vertex=a[i];

       adjlist[i].firstedge=NULL;     

    }

    for (k=0; k<arcNum; k++)  

     {

         cin>>i>>j;   

         s=new ArcNode; s->adjvex=j;            

         s->next=adjlist[i].firstedge;   

         adjlist[i].firstedge=s;

     }

}

邻接表中图的基本操作——深度优先遍历

template <class T>

void ALGraph::DFSTraverse(int v)      

    cout<<adjlist[v].vertex;  visited[v]=1;

    p=adjlist[v].firstedge;   

    while (p!=NULL)     {

        j=p->adjvex;

        if (visited[j]==0) DFSTraverse(j);

    p=p->next;          

    }

}

邻接表中图的基本操作——广度优先遍历

template <class T>

void ALGraph::BFSTraverse(int v){

   front=rear=-1;  

   cout<<adjlist[v].vertex;    visited[v]=1;   Q[++rear]=v;  

   while (front!=rear)  {

       v=Q[++front];    p=adjlist[v].firstedge;   

       while (p!=NULL)  {

            j= p->adjvex;

            if (visited[j]==0) {

                cout<<adjlist[j].vertex;  visited[j]=1; Q[++rear]=j;

            }

            p=p->next;

       }

    }

}

 

十字链表:有向图的链式存储结构

十字链表的结点结构

vertex:数据域,存放顶点信息;

firstin入边表头指针;

firstout出边表头指针;

tailvex弧的起点在顶点表中的下标;

headvex弧的终点在顶点表中的下标;

headlink入边表指针域;

taillink出边表指针域。

 

边集数组

利用两个一维数组

一个数组存储顶点信息, 另外一个数组存储边及其权
其中,数组分量包含三个域:边所依附的两个顶点,权值
各边在数组中的次序可以任意。
 
 

 

图的连通性

求无向图的连通分量(非连通图的遍历方法)

1. count=0;

2.  for (图中每个顶点v)

  2.1 if (v尚未被访问过)

             2.1.1 count++;

             2.1.2 v出发遍历该图(函数调用);

3.  if (count==1) cout<<"图是连通的";

     else cout<<"图中有"<<count<<"个连通分量";

 

最小生成树(minimal spanning tree

成树的代价: G= V E )是一个无向连通网,生成树上各边的权值之和称为该 成树的代价

最小生成树:在图G所有生成树中,代价最小的生成树称为最小生成树。 

构造最小代价生成树

两种方法:

Prime法:加点法

Kruskal方法:加边法

 

普里姆(Prim算法

基基本思想

G=(V, E)是具有n个顶点的连通网,

T=(U, TE)G的最小生成树,

T初始状态U={u0}u0V),TE={ }

重复执行下述操作:

在所有uUvV-U中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V

数据结构设计:

数组lowcost[n]:用来保存集合V-U中各顶点与集合U中顶点最短边的权值,lowcost[v]=0表示顶点v已加入最小生成树中;

数组adjvex[n]用来保存该边所依附的(集合V-U中各顶点与集合U中顶点的最短边)集合U中的顶点。

Prim算法——伪代码

1. 初始化两个辅助数组lowcost=arc[0][i])和adjvex(=0)(0是始点)

2. 输出顶点u0,将顶点u0加入集合U中;

3. 重复执行下列操作n-1

   3.1 lowcost中选取最短边(lowcost[k]),取对应的顶点序号k

   3.2 输出顶点k和对应的权值;

   3.3 将顶点k加入集合U中(lowcost[k]=0);

   3.4 调整数组lowcostadjvex

Void prime(MGraph G){

    for(int i=1;i<G.vertexNu;i++){

        lowcost[i]=G.arc[0][i];  adjvex[i]=0;

    }

    lowcost[0]=0;

    for(i=1;i<G.vertexNum;i+++){

        k=MinEdge(lowcost,G.vertexNum)

        cout<<K<<adjvex[k]<<lowcost[k];

        lowcost[k]=0;

      for(j=1;j<G.vertexNum;j++)

          if((G.arc[k][j]<lowcost[j]){

              lowcost[j]=G.arc[k][j];

              arcvex[j]=k;

           }

    }

}

 

克鲁斯卡尔(Kruskal)算法

基本思想

1. 设无向连通网为 G ( V , E ) ,令 G 的最小生成树为 T ( U , TE ) ,其 初态为 U V TE { }
2. 然后,按照 边的权值由小到大的顺序 ,考察 G 的边集 E 中的各条边。
1. 若被考察的边的两个顶点属于 T 的两个不同的 连通分量 ,则将此边作为最小生成树的边加入到 T 中,同时把两个连通分量连接为一个连通分量;
2. 若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,
3. 如此下去,当 T 中的连通分量个数为 1 时,此连通分量便为 G 的一棵最小生成树。
克鲁斯卡尔伪代码
1. 初始化 parent 数组 , 定义计数器 count (记录加入到生成树中的顶点的个数 )
2. 对边集数组进行排序
3. 依次考察边集数组中的每一条边( u v

     3.1确定u所在的树的根节点vex1;

     3.2确定v所在的树的根节点vex2;

     3.3 如果vex1!=vex2,则执行

         a. parent[vex2]=vex1;//将第一个节点的父亲设为第二个节点的父亲, 合并 为一个连通分量

            b. count++;

            c. 如果count==n-1,算法结束。

int main(){

    int arcNum, int vertexNum;

    EdgeNode *edge;

    int *parent;

 cout<<"please input the number of vertexNum:"; cin>>vertexNum;

    cout<<"please input the number of edges:";  cin>>arcNum;

    edge=new EdgeNode[arcNum];  parent=new int[vertexNum];

    for(int i=0;i<arcNum;i++)  {

   cout<<"Please input the edges:";

  cin>>edge[i].from>>edge[i].to>>edge[i].weight;

    }

    sort(edges, G); //对边集数组进行堆排序,时间复杂性为O(eloge)

    for (i=0;i<vertexNum;i++)

  parent[i]=-1;  //每个节点分属于不同的集合

int k=0,begin,end,count=0;

    cout<<"next is the MST :"<<endl;

for (k=0;k<arcNum;k++)  {

         begin=edge[k].from;  end=edge[k].to; 

         int m,n;

        m=Find(parent,begin);  n=Find(parent,end);

        if(m!=n)  {

            cout<<begin<<","<<end<<","<<edge[k].weight<<endl;

            parent[n]=m;  count++;

            if(count==vertexNum-1)  break;

       }

   }

   return 0;

}

int Find(int *parent, int node)

{

  int f;

  f=node;

  while(parent[f]>-1)

  f=parent[f];

  return f;

}

最短路径 问题

在非网图中,最短路径是指两顶点之间经历的边数最少的路径。

单源点到其他顶点的最短路径

Dijkstra方法,On2

任意一对顶点之间的最短路径

Floyed方法,On3

 

Dijkstra算法

基本思想

1. 设置一个集合 S 存放已经找到最短路径的顶点 S 的初始状态只包含源点 v
2. v i V - S ,假设从源点 v v i 的有向边为最短路径(从 v 到其余顶点的最短路径的初值)。
3. 以后每求得一条最短路径 v , …, v k ,就将 v k 加入集合 S 中,并将路径 v , …, v k , v i 与原来的假设相比较,取路径长度较小者为最短路径。

重复上述过程,直到集合V中全部顶点加入到集合S中。

Dijkstra算法——伪代码

1. 初始化数组distpaths

2. while (s中的元素个数<n)

     2.1 dist[n]中求最小值,其下标为k

     2.2 输出dist[k]path[k]

     2.3 修改数组distpath

     2.4 将顶点vk添加到数组s中;

Const int MAX=1000;

void  Dijkstra(MGraph g, int v){

       for ( i =0; i<g.vexnum ; i++){

   disti=g.arcsv][i

               if ( disti!= MAX)  path [i]=g.vertex[v]+g.vertex[i];      else path[i]=“”;

       }

       S[0]=g.vertex[v];

        num=1;

While (num<g.vextexNum){

    k=0;

    for(i=0;i<G.vertexNum;i++)

           if((dist[i]<dist[k])   k=i

    cout<<dist[k]<<path[k];

    s[num++]=G.vertex[k];               

    for(i=0;i<G.vertexNum;i++)

             if(dist[k]+g.arc[k][i]<dist[i] {

   dist[i]=dist[k]+g.arc[k][i];

                       path[i]=path[k]+g.vertex[i];

               }

}

}

 

 Floyd算法

基本思想:

      设图g用邻接矩阵法表示,

      求图g中任意一对顶点vivj间的最短路径。

   (-1) 将vivj 的最短的路径长度初始化为(vi,vj), 然后进行如下n次比较和修正:

    (0) 在vivj间加入顶点v0,比较(vi, v0, vj)和(vi, vj)的路径的长度,取其中较短的路径作为vivj的且中间顶点号不大于0的最短路径。

 

数组dist[n][n]存放在迭代过程中求得的最短路径长度。迭代公式:

dist-1[i][j]=arc[i][j]

dist k[i][j]=min{distk-1[i][j], distk-1[i][k]+distk-1[k][j]}     0≤k ≤n-1

数组path[n][n] 存放从vivj的最短路径,初始为path[i][j]="vivj"

void Floyd(MGraph G)

{

    for (i=0; i<G.vertexNum; i++)       

       for (j=0; j<G.vertexNum; j++)

       {

          dist[i][j]=G.arc[i][j];

          if (dist[i][j]!=∞)

               path[i][j]=G.vertex[i]+G.vertex[j];

          else path[i][j]="";

       } 

     for (k=0; k<G.vertexNum; k++)        

        for (i=0; i<G.vertexNum; i++)      

           for (j=0; j<G.vertexNum; j++)

               if (dist[i][k]+dist[k][j]<dist[i][j]) {

                    dist[i][j]=dist[i][k]+dist[k][j];

                    path[i][j]=path[i][k]+path[k][j];

              }

}

 

AOV网与拓扑排序

AOV网:在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,称这样的有向图为顶点表示活动的网,简称AOV网。

AOV网特点:

1.AOV网中的弧表示活动之间存在的某种制约关系。

2.AOV网中不能出现回路

拓扑序列:

G=(VE)是一个具有n个顶点的有向图,V中的顶点序列v1, v2, …, vn称为一个拓扑序列,当且仅当满足下列条件:若从顶点vivj有一条路径,则在顶点的拓扑序列中顶点vi必在顶点vj之前

拓扑排序:对一个有向图构造拓扑序列的过程称为拓扑排序

拓扑排序基本思想:

⑴ 从AOV网中选择一个没有前驱的顶点并且输出;

⑵ 从AOV网中删去该顶点,并且删去所有以该顶点为尾的弧;

重复上述两步,直到全部顶点都被输出,或AOV网中不存在没有前驱的顶点。

         AOV-网的拓扑序列不是唯一的。

 

图的存储结构:采用邻接表存储 ,在顶点表中增加一个入度域。

                           顶点表结点

. S:存储所有无前驱的顶点(入度为零的顶点)

 

基于邻接表的拓扑排序的基本思想:

1)找G中无前驱的顶点

  查找indegree i]为零的顶点vi

2)修改邻接于顶点i的顶点的入度(删除以i为起点的所有弧)

  对链在顶点i后面的所有邻接顶点k,将对应的indegreek] 减1

       为了避免重复检测入度为零的顶点,可以再设置一个辅助栈,若某一顶点的入度减为0,则将它入栈。每当输出某一入度为0的顶点时,便将它从栈中删除。

拓扑排序算法——伪代码

1. S初始化;累加器count初始化;

2. 扫描顶点表,将没有前驱的顶点压栈;

3. 当栈S非空时循环

       3.1 vj=退出栈顶元素;输出vj;累加器加1

       3.2 将顶点vj的各个邻接点的入度减1

       3.3 将新的入度为0的顶点入栈;

4. if (count<vertexNum) 输出有回路信息;

void TOpSort(){

int  top=-1, count=0;

for(int i=0;i<vertexnum;i++)

     if(adjlist[i].in==0) s[++top]=i;

while(top!=-1){

    j=s[top--]; cout <<adjlist[j].vertext;   count++;

    p=adjlist[j].firstedge;

    while(p!=NULL){

          k=p->adjvex; adjlist[k].in--;

         if(adjlist[k].in==0) s[top++]=k;

         p=p->next;

      }

}

 

AOE网与关键路径

AOE网:

在一个表示工程的带权有向图中,

用顶点表示事件,

用有向边表示活动,

边上的权值表示活动的持续时间,

称这样的有向图叫做边表示活动的网,简称AOE

AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。

AOE网的性质:

⑴ 只有在某顶点所代表的事件发生后,从该顶点出发的各活动才能开始

⑵ 只有在进入某顶点的各活动都结束,该顶点所代表的事件才能发生

关键路径

关键路径:AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径称为关键路径。

关键活动:关键路径上的活动称为关键活动。

 

要找出关键路径,必须找出关键活动, 即不按期完成就会影响整个工程完成的活动。

首先计算以下与关键活动有关的量:

⑴ 事件的最早发生时间ve[k]

⑵ 事件的最迟发生时间vl[k]

⑶ 活动的最早开始时间e[i]

⑷ 活动的最晚开始时间l[i]

最后计算各个活动的时间余量 l[k] - e[k],时间余量为0者即为关键活动。

 

存储结构的选择:

为处理方便,同时采用了邻接矩阵和边集数组两种存储结

邻接矩阵可以方便的查找邻接点,完成时间的最早和最晚发生时间的计算。

 边集数组可以方便的计算时间的活动的最晚发生时间

struct Edge

{

  int from;

  int to;

  int e;

  int l;

};

class Grap

{

  int vertexnum,e;

  int **adjlist;   //邻接矩阵

  int start,end;

  Edge *edge;  //边集数组

public:

  Grap(int n,int e);

  int  path();

};

⑴ 事件的最早发生时间ve[k]

ve[k]是指从始点开始到顶点vk的最大路径长度。这个长度决定了所有从顶点vk发出的活动能够开工的最早时间。

ve[1]=0;ve[k]=max{ve[j]+len<vj, vk>} (<vj, vk>∈p[k])                      

p[k]表示所有到达vk的有向边的集合

     q.push(0);//源点时间入队

  for(j=0;j<vertexnum;j++)  {  //初始化每个事件最早发生时间

  ve[j]=0;  visit[j]=0;  }

  visit[0]=1; 

     while(!q.empty())  { 

  i=q.front(); //利用标准模板库中的队列实现

  q.pop();

  for(j=0;j<vertexnum;j++){//计算i的邻接点的ve

  if(adjlist[i][j]!=9999 && ve[i]+adjlist[i][j]>ve[j] ){

  ve[j]=ve[i]+adjlist[i][j];

  if(!visit[j])   //如果j没有被访问过,顶点j入队

  q.push(j);

  visit[j]=1;

  }

  }

  }

⑵ 事件的最迟发生时间vl[k]

vl[k]是指在不推迟整个工期的前提下,事件vk允许的最晚发生时间。

vl[n]=ve[n];vl[k]=min{vl[j]-len<vk , vj>}<vk, vj>∈s[k]

s[k]为所有从vk发出的有向边的集合

   q.push(vertexnum-1);

  for(j=0;j<vertexnum;j++)  {

  vl[j]=ve[vertexnum-1];  visit[j]=0;  }

    while(!q.empty())  {

  i=q.front();

  q.pop();

  for(j=0;j<vertexnum;j++)  {

  if(adjlist[j][i]!=9999 && vl[i]-adjlist[j][i]<vl[j] ){

  vl[j]=vl[i]-adjlist[j][i];

  if(!visit[j])

  q.push(j);

  visit[j]=1;

  }

}

}

 ⑶ 活动的最早开始时间e[i]

若活动ai是由弧<vk , vj>表示,则活动ai的最早开始时间应等于事件vk的最早发生时间。因此,有:  e[i]=ve[k]                      

     for(i=0;i<e;i++)

  {

  edge[i].e=ve[edge[i].from];

  }

⑷ 活动的最晚开始时间l[i]  

活动ai的最晚开始时间是指,在不推迟整个工期的前提下, ai必须开始的最晚时间。

ai由弧<vkvj>表示,

ai的最晚开始时间要保证事件vj的最迟发生时间不拖后。

因此,有:

       l[i]=vl[j]-len<vk, vj>      

  for(i=0;i<e;i++)

  {

  edge[i].e=ve[edge[i].from];

  edge[i].l=vl[edge[i].to]-adjlist[edge[i].from][edge[i].to];

if(edge[i].e==edge[i].l)

  cout<<edge[i].from<<"  "<<edge[i].to<<endl;

  }

最后,根据每个活动ai的最早开始时间ee[i]和最晚开始时间el[i],判定该活动是否为关键活动,那些el[i]=ee[i]的活动就是关键活动。关键活动确定之后,关键活动所在的路径就是关键路径。

                            

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值