数据结构笔记:第六章 图

图 定义:

     图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:                          

                                  G=(V,E)

              其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。

在线性表中,元素个数可以为零,称为空表;

在树中,结点个数可以为零,称为空树;

在图中,顶点个数不能为零,但可以没有边。

         若顶点vi和vj之间的边没有方向,则称这条边为无向边,表示为(vi,vj)。

         如果图的任意两个顶点之间的边都是无向边,则称该图为无向图。

         若从顶点vi到vj的边有方向,则称这条边为有向边,表示为<vi,vj>。

         如果图的任意两个顶点之间的边都是有向边,则称该图为有向图。

简单图:

     在图中,若不存在顶点到其自身的边,且同一条边不重复出现。

邻接、依附

       无向图中,对于任意两个顶点vi和顶点vj,若存在边(vi,vj),则称顶点vi和顶点vj互为邻接点,同时称边(vi,vj)依附于顶点vi和顶点vj。

稀疏图:称边数很少的图为稀疏图;

稠密图:称边数很多的图为稠密图。

顶点的度:在无向图中,顶点v的度是指依附于该顶点的边数,通常记为TD (v)。

顶点的入度:在有向图中,顶点v的入度是指以该顶点为弧头的弧的数目,记为ID (v);

顶点的出度:在有向图中,顶点v的出度是指以该顶点为弧尾的弧的数目,记为OD (v)。

:是指对边赋予的有意义的数值量。

:边上带权的图,也称网图。

路径:在无向图G=(V, E)中,从顶点vp到顶点vq之间的路径是一个顶点序列(vp=vi0,vi1,vi2, …, vim=vq),其中,(vij-1,vij)∈E(1≤j≤m)。若G是有向图,则路径也是有方向的,顶点序列满足<vij-1,vij>∈E。

路径长度:非带权图——路径上边的个数

                  带权图——路径上各边的权之和

回路(环):第一个顶点和最后一个顶点相同的路径。

简单路径:序列中顶点不重复出现的路径。

简单回路(简单环):除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路。

子图:若图G=(V,E),G'=(V',E'),如果V'V 且E'  E ,则称图G'是G的子图。

连通图:在无向图中,如果从一个顶点vi到另一个顶点vj(i≠j)有路径,则称顶点vi和vj是连通的。如果图中任意两个顶点都是连通的,则称该图是连通图。

连通分量:非连通图的极大连通子图称为连通分量。

          1.含有极大顶点数; 2. 依附于这些顶点的所有边

强连通图:在有向图中,对图中任意一对顶点vi和vj (i≠j),若从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称该有向图是强连通图。

强连通分量:非强连通图的极大强连通子图。

生成树:n个顶点的连通图G的生成树是包含G中全部顶点的一个极小连通子图。

             含有n-1条边 多——构成回路    少——不连通

生成森林:在非连通图中,由每个连通分量都可以得到一棵生成树,这些连通分量的生成树就组成了一个非连通图的生成森林。

在图中,任何两个顶点之间都可能存在边,顶点是没有确定的先后次序的,所以,顶点的编号不唯一。

深度优先遍历

      ⑴ 访问顶点v;

       ⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;

        ⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。

int visited[MaxSize];
template <class T>
void MGraph::DFSTraverse(int v){
     cout<<vertex[v]; visited [v]=1;
     for (j=0; j<vertexNum; j++)
         if (arc[v][j]==1 && visited[j]==0)
            DFSTraverse( j );
}

广度优先遍历 

          ⑴ 访问顶点v;

           ⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;

           ⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。

int visited[MaxSize];
template <class T>
void MGraph::BFSTraverse(int v){     
    front=rear=-1;   //假设采用顺序队列且不会发生溢出
   int Q[MaxSize]; cout<<vertex[v]; visited[v]=1;  Q[++rear]=v; 
    while (front!=rear)    {
         v=Q[++front];   
         for (j=0; j<vertexNum; j++)
            if (arc[v][j]==1 && visited[j]==0 ) {
                  cout<<vertex[j]; visited[j]=1; Q[++rear]=j;
            }
      }
}

邻接矩阵(数组表示法)

        基本思想: 用一个一维数组存储图中顶点的信息 用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。

邻接矩阵中图的基本操作——构造函数

   1、 确定图的顶点个数和边的个数;

   2、输入顶点信息存储在一维数组vertex中;

    3、初始化邻接矩阵;

   4、依次输入每条边存储在邻接矩阵arc中;      

                            4.1 输入边依附的两个顶点的序号i, j;    

                           4.2 将邻接矩阵的第i行第j列的元素值置为1;    

                           4.3 将邻接矩阵的第j行第i列的元素值置为1;

template <class T>
MGraph::MGraph(T a[ ], int n, int e) {
    vertexNum=n; arcNum=e;
    for (i=0; i<vertexNum; i++) 
        vertex[i]=a[i];
    for (i=0; i<vertexNum; i++)    //初始化邻接矩阵
	   for (j=0; j<vertexNum; j++)
           arc[i][j]=0;             
    for (k=0; k<arcNum; k++) {
        cin>>i>>j;     //边依附的两个顶点的序号
        arc[i][j]=1;  arc[j][i]=1;  //置有边标志    
    }
}

邻接矩阵上的其他操作

增加一个顶点

        在存储顶点的一维数组中插入该顶点的信息

        在邻接矩阵中插入一行、一列

template <class T>
void MGraph<T>::InsertVex(int num,T name) { 
 if ( num<0|| num>vertexNum) throw "位置";     
 int row, col, numv; 
 numv = vertexNum-1;
vertexNum++;    
for(int i=numv;i>=num;i--)	vertex[i++]=vertex[i];  
vertex[num]=name;    
 for(row=numv;row>=0;row--)  {所有行上num列之后的列后移,增加一列,
    for(col=numv;col>=num;col--)  arc[row][col+1]=arc[row][col];
     arc[row][num]=0;
  }
  for(row=numv;row>=num;row--) 
        for(col=0;col<=numv+1;col++)  arc[row+1][col]=arc[row][col];	
  for(col=0;col<vertexNum;col++)  arc[num][col]=0; 
 }

删除一个顶点

         在存储顶点的一维数组中删除该顶点的信息

         在邻接矩阵中删除一行、一列

template <class T>   void MGraph<T>::DeleteVex(int pos){
     if ( pos<0||  pos>MaxSize) throw "位置";   
     int row, col;    
     int numv=vertexNum;    
     for(int i=pos;i<numv;i++)   vertex[i]=vertex[i+1];    
     vertexNum--;                            
     for(row=0;row<numv;row++)   { //删除一列
         for(col=pos;col<numv;col++)	  arc[row][col]=arc[row][col+1];  
    }
    for(row=pos;row<numv;row++) 
	  for(col=0;col<numv;col++)
		  arc[row][col]=arc[row+1][col];      
  } 
}

 增加一条边

        修改相应的矩阵元素的值

tmplate <class T>
void MGraph<T>::InsertArc(int i, int j)
{
  if ( i>MaxSize||  j>MaxSize) throw "位置";  
  arc[i][j]=1;
  arc[j][i]=1;
} 

删除一条边

           修改相应的矩阵元素的值

template <class T>
void MGraph<T>::DeleteArc(int i, int j)
{
         if ( i>MaxSize||  j>MaxSize) throw "位置";
 
         arc[i][j]=arc[j][i]=0;   
}

邻接表存储的基本思想:

    对于图的每个顶点vi,将所有邻接于vi的顶点链成一个单链表,称为顶点vi的边表(对于有向图则称为出边表) 所有边表的头指针和存储顶点信息的一维数组构成了顶点表。

邻接表有两种结点结构:顶点表结点和边表结点。

           顶点表       vertex | firstedge

                                 vertex:数据域,存放顶点信息。 firstedge:指针域,指向边表中第一个结点。

            边表        adjvex | next

                                   adjvex:邻接点域,边的终点在顶点表中的下标。 next:指针域,指向边表中的下一个结点。

定义邻接表的结点

struct ArcNode{   
      int adjvex; 
      ArcNode *next;
};

template <class T>
struct VertexNode{
      T vertex;
      ArcNode *firstedge;
};

邻接表中图的基本操作——构造函数

1. 确定图的顶点个数和边的个数;

2. 输入顶点信息,初始化该顶点的边表;

3. 依次输入边的信息并存储在边表中;      

           3.1  输入边所依附的两个顶点的序号i和j;    

           3.2  生成邻接点序号为j的边表结点s;    

           3.3 将结点s插入到第i个边表的头部;

template <class T>
ALGraph::ALGraph(T a[ ], int n, int e)
{   
    vertexNum=n; arcNum=e; 
    for (i=0; i<vertexNum; i++)   
    {
       adjlist[i].vertex=a[i];
       adjlist[i].firstedge=NULL;      
    } 
    for (k=0; k<arcNum; k++)   
     {
         cin>>i>>j;    
         s=new ArcNode; s->adjvex=j;  	        
         s->next=adjlist[i].firstedge;    
         adjlist[i].firstedge=s;
     }
}

邻接表中图的基本操作——深度优先遍历

template <class T>
void ALGraph::DFSTraverse(int v){        
    cout<<adjlist[v].vertex;  visited[v]=1;
    p=adjlist[v].firstedge;    
    while (p!=NULL)     {
        j=p->adjvex;
        if (visited[j]==0) DFSTraverse(j);
    p=p->next;           
    }
}

邻接表中图的基本操作——广度优先遍历

template <class T>
void ALGraph::BFSTraverse(int v){
   front=rear=-1;   
   cout<<adjlist[v].vertex;    visited[v]=1;   Q[++rear]=v;   
   while (front!=rear)  {
       v=Q[++front];    p=adjlist[v].firstedge;    
       while (p!=NULL)  {
            j= p->adjvex;
            if (visited[j]==0) {
                cout<<adjlist[j].vertex;  visited[j]=1; Q[++rear]=j;
            }
            p=p->next;
       }
    }
}

其他操作:

增删顶点

 增加:

顶点表中插入一个元素

删除:在顶点表中删除一个元素,同时在边表中删除相应的边

增删边<x, y> 如果是有向图,则在x的边表中增加/删除边; 如果是无向图,则还要在y的边表中增加/删除一条边

十字链表的结点结构

      顶点表结点:  vertex | firstin | firstout

      vertex:数据域,存放顶点信息;

      firstin:入边表头指针;

      firstout:出边表头指针;

   边表结点:            tailvex | headvex | headlink | taillink

      tailvex:弧的起点在顶点表中的下标;

     headvex:弧的终点在顶点表中的下标;

     headlink:入边表指针域;

     taillink:出边表指针域。

最小生成树

生成树的代价:设G=(V,E)是一个无向连通网,生成树上各边的权值之和称为该生成树的代价。

最小生成树:在图G所有生成树中,代价最小的生成树称为最小生成树。 

MST性质:

假设G=(V, E)是一个无向连通网,U是顶点集V的一个非空子集。若(u, v)是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边(u, v)的最小生成树。

Prim算法:

基本思想: 设G=(V, E)是具有n个顶点的连通网,

                   T=(U, TE)是G的最小生成树,

                   T的初始状态为U={u0}(u0∈V),TE={ },

                   重复执行下述操作:

                 在所有u∈U,v∈V-U的边中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V。

  伪代码:

        1. 初始化两个辅助数组lowcost(=arc[0][i])和adjvex(=0)(0是始点);

        2. 输出顶点u0,将顶点u0加入集合U中;

       3. 重复执行下列操作n-1次  

                  3.1 在lowcost中选取最短边(lowcost[k]),取对应的顶点序号k;    

                  3.2 输出顶点k和对应的权值;  

                  3.3 将顶点k加入集合U中(lowcost[k]=0);  

                  3.4 调整数组lowcost和adjvex;

Void prime(MGraph G){
    for(int i=1;i<G.vertexNu;i++){
        lowcost[i]=G.arc[0][i];  adjvex[i]=0;
    }
    lowcost[0]=0;
    for(i=1;i<G.vertexNum;i+++){
        k=MinEdge(lowcost,G.vertexNum)
        cout<<K<<adjvex[k]<<lowcost[k];
        lowcost[k]=0;
     for(j=1;j<G.vertexNum;j++)
          if((G.arc[k][j]<lowcost[j]){
              lowcost[j]=G.arc[k][j];
              arcvex[j]=k;
           }
    }
}

Kruskal算法:

基本思想: 

    1、设无向连通网为G=(V, E),令G的最小生成树为T=(U, TE),其初态为U=V,TE={ },

    2、然后,按照边的权值由小到大的顺序,考察G的边集E中的各条边。

             1)若被考察的边的两个顶点属于T的两个不同的连通分量,则将此边作为最小生成树的边加入到T中,同时把两个连通分量连接为一个连通分量;

              2)若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,

      3、如此下去,当T中的连通分量个数为1时,此连通分量便为G的一棵最小生成树。

 伪代码:

    1. 初始化:U=V;  TE={ };

    2. 循环直到T中的连通分量个数为1      

                  2.1 在E中寻找最短边(u,v);      

                   2.2 如果顶点u、v位于T的两个不同连通分量,则            

                                    2.2.1 将边(u,v)并入TE;          

                                    2.2.2 将这两个连通分量合并为一个;    

                  2.3 在E中标记边(u,v),使得(u,v)不参加后续最短边的选取;

最短路径:

在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径。

Dijkstra算法

   基本思想:

                1、设置一个集合S存放已经找到最短路径的顶点,S的初始状态只包含源点v,

                 2、对vi∈V-S,假设从源点v到vi的有向边为最短路径(从v到其余顶点的最短路径的初值)。

                3、以后每求得一条最短路径v, …, vk,就将vk加入集合S中,并将路径v, …, vk , vi与原来的假设相比较,取路径长度较小者为最短路径。

               重复上述过程,直到集合V中全部顶点加入到集合S中。

路径长度最短的最短路径(即第一条最短路)的特点

     在这条路径上,必定只含一条边,并且这条边上的权值最小。

下一条路径长度次短的最短路径的特点

      它只可能有两种情况: 或者是直接从源点到该点(只含一条边);

                                           或者是从源点经过顶点v1(第一条最短路径所依附的顶点),再到达该顶点(由两条边组成)。

再下一条路径长度次短的最短路径的特点

          它可能有四种情况:或者是直接从源点到该点(只含一条边); 或者从源点经过顶点v1,再到达该顶点(由两条边组成);或者是从源点经过顶点v2,再到达该顶点(两条条边);或者是从源点经过顶点v1、v2,再到达该顶点(多条边)。 

其余最短路径的特点

        它或者是直接从源点到该点(只含一条边); 或者是从源点经过已求得最短路径的顶点(集合S中的顶点),再到达该顶点。

Dijkstra基本思想:1、 设置一个集合S存放已经找到最短路径的顶点,S的初始状态只包含源点v,

                               2、对vi∈V-S,假设从源点v到vi的有向边为最短路径(从v到其余顶点的最短路径的初值)。

                              3、以后每求得一条最短路径v, …, vk,就将vk加入集合S中,并将路径v, …, vk , vi与原来的假设相比较,取路径长度较小者为最短路径。

                               重复上述过程,直到集合V中全部顶点加入到集合S中。

  基本算法:

       (1) g为用邻接矩阵表示的带权图。  S←{v0} , dist[i]= g.arcs[v0][vi] ,path[i]=“v0vi”或“”; 将v0到其余顶点的路径长度初始化为权值;

       (2) 选择vk,使得

                   dist[vk]=min(dist[i] | vi∈V-S)

             vk为目前求得的下一条从v0出发的最短路径的终点。 将vk加入到S中

        (3) 修改从v0出发到集合V-S上任一顶点vi的最短路径的长度。如果         dist[k]+ g.arcs[k][i]<dist[i] 则将dist[i]修改为            dist[k]+ g.arcs[k][i]           path[i]=path[k]+”vi”

        (4) 重复(2)、(3) n-1次,即可按最短路径长度的递增顺序,逐个求出v0到图中其它每个顶点的最短路径。

const int MAX=1000;
void  Dijkstra(MGraph g, int v){
       for ( i =0; i<g.vexnum ; i++){
	 dist[i]=g.arcs[v][i];  
               if ( dist[i]!= MAX) 
                      path [i]=g.vertex[v]+g.vertex[i];
               else
                      path[i]=“”;
       }
       S[0]=g.vertex[v]; 
       num=1;  
While (num<g.vextexNum){
    k=0;
    for(i=0;i<G.vertexNum;i++)
           if((dist[i]<dist[k])   k=i
    cout<<dist[k]<<path[k];
    s[num++]=G.vertex[k];                
    for(i=0;i<G.vertexNum;i++)
             if(dist[k]+g.arc[k][i]<dist[i] {
		 dist[i]=dist[k]+g.arc[k][i];
                       path[i]=path[k]+g.vertex[i];
               }
}
}

图的存储结构:邻接矩阵存储结构 

数组dist[n]:每个分量dist[i]表示当前所找到的从始点v到终点vi的最短路径的长度。初态为:     若从v到vi有弧,则dist[i]为弧上权值;否则置dist[i]为∞。

数组path[n]:path[i]是一个字符串,表示当前所找到的从始点v到终点vi的最短路径。初态为:若从v到vi有弧,则path[i]为vvi;否则置path[i]空串。

数组s[n]:存放源点和已经找到最短路径的终点,其初态为只有一个源点v。

 Floyd算法

            设图g用邻接矩阵法表示,       求图g中任意一对顶点vi、 vj间的最短路径。    

          (-1) 将vi到vj 的最短的路径长度初始化为(vi,vj), 然后进行如下n次比较和修正:    

           (0) 在vi、vj间加入顶点v0,比较(vi, v0, vj)和(vi, vj)的路径的长度,取其中较短的路径作为vi到vj的且中间顶点号不大于0的最短路径。

            (1)  在vi、vj间加入顶点v1,       得(vi, …,v1)和(v1, …,vj),其中:      (vi, …, v1)是vi到v1 的且中间顶点号不大于0的最短路径,         (v1, …, vj) 是v1到vj 的且中间顶点号不大于0的最短路径,      这两条路径在上一步中已求出。       将(vi, …, v1, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于0的最短路径比较,取其中较短的路径作为vi到vj 的且中间顶点号不大于1的最短路径。

            (2)在vi、vj间加入顶点v2,得          (vi, …, v2)和(v2, …, vj), 其中:         (vi, …, v2)是vi到v2 的且中间顶点号不大于1的最短路径,            (v2, …, vj) 是v2到vj 的且中间顶点号不大于1的最短路径,            这两条路径在上一步中已求出。            将(vi, …, v2, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于1的最短路径比较, 取其中较短的路径作为vi到vj 的且中间顶点号不大于2的最短路径。 ……

void Floyd(MGraph G)
{
    for (i=0; i<G.vertexNum; i++)        
       for (j=0; j<G.vertexNum; j++)
       {
          dist[i][j]=G.arc[i][j];
          if (dist[i][j]!=∞) 
               path[i][j]=G.vertex[i]+G.vertex[j];
          else path[i][j]=""; 
       }
     for (k=0; k<G.vertexNum; k++)         
        for (i=0; i<G.vertexNum; i++)       
           for (j=0; j<G.vertexNum; j++)
               if (dist[i][k]+dist[k][j]<dist[i][j]) {
                    dist[i][j]=dist[i][k]+dist[k][j];
                    path[i][j]=path[i][k]+path[k][j];
              }
}

AOV网:在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,称这样的有向图为顶点表示活动的网,简称AOV网。

          特点:

                1.AOV网中的弧表示活动之间存在的某种制约关系。

                2.AOV网中不能出现回路 。

AOE网: 在一个表示工程的带权有向图中, 用顶点表示事件, 用有向边表示活动, 边上的权值表示活动的持续时间, 称这样的有向图叫做边表示活动的网,简称AOE网。 AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。

        性质:

              ⑴ 只有在某顶点所代表的事件发生后,从该顶点出发的各活动才能开始;

              ⑵ 只有在进入某顶点的各活动都结束,该顶点所代表的事件才能发生。

拓扑序列: 设G=(V,E)是一个具有n个顶点的有向图,V中的顶点序列v1, v2, …, vn称为一个拓扑序列,当且仅当满足下列条件:若从顶点vi到vj有一条路径,则在顶点的拓扑序列中顶点vi必在顶点vj之前。 拓扑排序:对一个有向图构造拓扑序列的过程称为拓扑排序 。

        基本思想: ⑴ 从AOV网中选择一个没有前驱的顶点并且输出;

                           ⑵ 从AOV网中删去该顶点,并且删去所有以该顶点为尾的弧;

                           ⑶ 重复上述两步,直到全部顶点都被输出,或AOV网中不存在没有前驱的顶点。 

        伪代码:

            1. 栈S初始化;累加器count初始化;

            2. 扫描顶点表,将没有前驱的顶点压栈;

            3. 当栈S非空时循环      

                     3.1 vj=退出栈顶元素;输出vj;累加器加1;      

                     3.2 将顶点vj的各个邻接点的入度减1;      

                     3.3 将新的入度为0的顶点入栈;

             4. if (count<vertexNum) 输出有回路信息;

void TOpSort(){
int  top=-1, count=0;
for(int i=0;i<vertexnum;i++)
     if(adjlist[i].in==0) s[++top]=i;
while(top!=-1){
    j=s[top--]; cout <<adjlist[j].vertext;   count++;
    p=adjlist[j].firstedge;
    while(p!=NULL){
          k=p->adjvex; adjlist[k].in--;
         if(adjlist[k].in==0) s[top++]=k;
         p=p->next;
      } 
}
If (count<vertexNum) cout<<“有回路”;
}

非连通图遍历方法:

             1 、count=0;

             2.  for (图中每个顶点v)        

                           2.1 if (v尚未被访问过)              

                                         2.1.1 count++;              

                                         2.1.2 从v出发遍历该图(函数调用);

             3.  if (count==1) cout<<"图是连通的";      else cout<<"图中有"<<count<<"个连通分量";

有向图连通子图的求解过程

⑴ 从某顶点出发进行深度优先遍历,并按其所有邻接点都访问完(即出栈)的顺序将顶点排列起来。

⑵ 从最后完成访问的顶点出发,沿着以该顶点为头的弧作逆向的深度优先遍历。若不能访问到所有顶点,则从余下的顶点中最后访问的那个顶点出发,继续作逆向的深度优先遍历,直至有向图中所有顶点都被访问到为止。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值