数据结构笔记15-查找技术1

查找的基本概念
列表:由同一类型的数据元素组成的集合。
关键码:数据元素中的某个数据项,可以标识列表中的一个或一组数据元素。
键值:关键码的值。
主关键码:可以唯一地标识一个记录的关键码。
次关键码:不能唯一地标识一个记录的关键码。
查找 :在具有相同类型的记录构成的集合中找出满足给定条件的记录。 
查找的结果 :若在查找集合中找到了与给定值相匹配的记录,则称查找成功;否则,
称查找失败。
静态查找 :不涉及插入和删除操作的查找 。
静态查找适用于:查找集合一经生成,便只对其进行查找,而不进行插入和删除操作;
或经过一段时间的查找之后,集中地进行插入和删除等修改操作。
动态查找 :涉及插入和删除操作的查找。
动态查找适用于:查找与插入和删除操作在同一个阶段进行,例如当查找成功时,要删
除查找到的记录,当查找不成功时,要插入被查找的记录。
查找结构 :面向查找操作的数据结构 ,即查找基于的数据结构。


查找算法的性能 
平均查找长度:将查找算法进行的关键码的比较次数的数学期望值定义为平均查找长度。
计算公式为:
    ASL = p1c1+p2c2+...+pncn 
n:问题规模,查找集合中的记录个数;
pi:查找第i个记录的概率;
ci:查找第i个记录所需的关键码的比较次数。
ci取决于算法;pi与算法无关,取决于具体应用。如果pi是已知的,则平均查找长度只
是问题规模的函数。


线性表的查找技术
顺序查找
#include 
using namespace std;
const int MaxSize = 100;
class LineSearch{
public:
    LineSearch(int a[ ], int n); //构造函数
   ~LineSearch( ) { } //析构函数为空
    int SeqSearch(int k); //顺序查找
    int BinSearch1(int k); //折半非递归查找
    int BinSearch2(int low, int high, int k); //折半递归查找
private:
    int data[MaxSize]; //查找集合为整型
    int length; //查找集合的元素个数
};
LineSearch :: LineSearch(int a[ ], int n){
    for (int i = 0; i < n; i++)
        data[i+1] = a[i]; //查找集合从下标1开始存放
    length = n;
}
普通的顺序查找基本思想:
从线性表的一端向另一端逐个将关键码与给定值进行比较,
若相等,则查找成功,给出该记录在表中的位置;
若整个表检测完仍未找到与给定值相等的关键码,则查找失败,给出失败信息。
int LineSearch :: SeqSearch(int k)
{   
     i=n;
     while (i>0 && data[i]!=k)
         i--;
     return i;
}
改进的顺序查找基本思想:设置“哨兵”。哨兵就是待查值,将它放在查找方向的尽头
处,免去了在查找过程中每一次比较后都要判断查找位置是否越界,从而提高查找速
度。
int LineSearch :: SeqSearch(int k)

    int i = length;        //从数组高端开始比较
    data[0] = k;           //设置哨兵
    while (data[i] != k) //不用判断下标i是否越界
        i--;
    return i; 
}
ASLusucc=n+1

单链表的顺序查找
int LinkSearch::SeqSearch2(Node *first, int k){  
    Node *p;
    int count=0;//记录比较的次数
    p=first->next; 
    int j=1;//记录数据在表中的位置
      while (p &&  p->data != k)
    {p=p->next;    j++;    count++;}
    if (!p){
             cout<<“查找失败,比较的次数为:"<<count<<endl;     
             return 0;
     } else{
        cout<<“\n”<<“查找成功,比较的次数为:"<<count<<endl;      
          return j;
    }
}

折半查找
适用条件:
线性表中的记录必须按关键码有序;
必须采用顺序存储。
基本思想:
在有序表中(low, high,low<=high),取中间记录作为比较对象,若给定值与中间
记录的关键码相等,则查找成功;若给定值小于中间记录的关键码,则在中间记录的
左半区继续查找;若给定值大于中间记录的关键码,则在中间记录的右半区继续查找。
不断重复上述过程,直到查找成功,或所查找的区域无记录,查找失败。
int LineSearch :: BinSearch1(int k){
     int mid, low = 1, high = length; //初始查找区间是[1, n]
     while (low <= high) {//当区间存在时
          mid = (low + high) / 2; 
          if (k < data[mid]) 
              high = mid - 1;
          else if (k > data[mid]) 
               low = mid + 1; 
          else
               return mid; //查找成功,返回元素序号
      }
      return 0; //查找失败,返回0
}
//递归
int LineSearch :: BinSearch2(int low, int high, int k){
      if (low > high) 
          return 0; //递归的边界条件
      else {
         int mid = (low + high) / 2;
      if (k < data[mid]) 
           return BinSearch2(low, mid-1, k);
      else if (k > data[mid]) 
           return BinSearch2(mid+1, high, k); 
      else 
           return mid; //查找成功,返回序号
     }
}

折半查找判定树
判定树:折半查找的过程可以用二叉树来描述,树中的每个结点对应有序表中的一个
记录,结点的值为该记录在表中的位置。通常称这个描述折半查找过程的二叉树为折
半查找判定树,简称判定树。
判定树的构造方法
⑴ 当n=0时,折半查找判定树为空;
⑵ 当n>0时,
    折半查找判定树的根结点为mid=(n+1)/2,
    根结点的左子树是与有序表r[1] ~ r[mid-1]相对应的折半查找判定树,
    根结点的右子树是与r[mid+1] ~ r[n]相对应的折半查找判定树。
任意两棵折半查找判定树,若它们的结点个数相同,则它们的结构完全相同
具有n个结点的折半查找树的高度为log2n +1
任意结点的左右子树中结点个数最多相差1
任意结点的左右子树的高度最多相差1
任意两个叶子所处的层次最多相差1
查找成功:在表中查找任一记录的过程,即是折半查找判定树中从根结点到该记录结
点的路径,和给定值的比较次数等于该记录结点在树中的层数。
查找成功时的平均查找长度ASL: ASL=(n+1/n)log2(n+1)-1
查找不成功:
查找失败的过程就是走了一条从根结点到外部结点的路径,
和给定值进行的关键码的比较次数等于该路径上内部结点的个数(失败情况下的平均
查找长度等于树的高度)。

二叉排序树
二叉排序树(也称二叉查找树):或者是一棵空的二叉树,或者是具有下列性质的二
叉树:
⑴若它的左子树不空,则左子树上所有结点的值均小于根结点的值;
⑵若它的右子树不空,则右子树上所有结点的值均大于根结点的值;
⑶ 它的左右子树也都是二叉排序树。
#include <iostream>
using namespace std;
template <class DataType> 
struct BiNode{    DataType data;     BiNode *lchild, *rchild;  };
class BiSortTree {
public:
    BiSortTree(int a[ ], int n); //建立查找集合a[n]的二叉排序树
     ~ BiSortTree( ){ Release(root); } //析构函数,同二叉链表的析构函数
    void InOrder( ){InOrder(root);} //中序遍历二叉树
    BiNode *InsertBST(int x) {return InsertBST(root, x);} //插入记录x
    BiNode *SearchBST(int k) {return SearchBST(root, k);} //查找值为k的结点
    void DeleteBST(BiNode *p, BiNode *f ); //删除f的左孩子p
private:
   void Release(BiNode *bt);
   BiNode *InsertBST(BiNode *bt , int x);  
   BiNode *SearchBST(BiNode *bt, int k); 
   void InOrder(BiNode *bt); //中序遍历函数调用
   BiNode *root; //二叉排序树的根指针
};
void InsertBST(BiNode<int> * & root , BiNode<int> *s);
分析:若二叉排序树为空树,则新插入的结点为新的根结点;否则,新插入的结点必
为一个新的叶子结点,其插入位置由查找过程得到。
若二叉排序树为空树,则新插入的结点为新的根结点;否则,如果插入的值比根节点
值大,则在右子树中进行插入;否则,在左子树中进行插入。
递归。
void BiSortTree :: InOrder(BiNode *bt) 
{
    if (bt == nullptr) return; //递归调用的结束条件
    else {
    InOrder(bt->lchild); //前序递归遍历bt的左子树
    cout << bt->data << "    "; //访问根结点bt的数据域
    InOrder(bt->rchild); //前序递归遍历bt的右子树 
    }
}

BiNode * BiSortTree :: SearchBST(BiNode *bt, int k)
{
    if (bt == nullptr) return nullptr;
    if (bt->data == k) return bt;
    else if (bt->data > k) return SearchBST(bt->lchild, k);
    else return SearchBST(bt->rchild, k);
}
BiNode *BiSortTree::InsertBST(BiNode *bt, int x)
{
    if (bt == nullptr)
    { //找到插入位置
        BiNode *s = new BiNode; 
        s->data = x;
        s->lchild = nullptr; s->rchild = nullptr;
        bt = s;
        return bt;
    }
    else if (bt->data > x) bt->lchild = InsertBST(bt->lchild, x);
    else bt->rchild = InsertBST(bt->rchild, x);
}

BiSortTree::BiSortTree(int a[ ], int n)
{
    root = nullptr;
    for (int i = 0; i < n; i++)
    root = InsertBST(root, a[i]);
}

void BiSortTree::DeleteBST(BiNode *p, BiNode *f ) 
{
    if ((p->lchild == nullptr) && (p->rchild == nullptr))
    { //p为叶子
        f->lchild = nullptr; 
        delete p; 
        return;
    }
    if (p->rchild == nullptr) 
    { //p只有左子树
        f->lchild = p->lchild; 
        delete p; 
        return;
    }
    if (p->lchild == nullptr) 
    { //p只有右子树
        f->lchild = p->rchild; 
        delete p; 
        return;
    }
    BiNode *par = p, *s = p->rchild; //p的左右子树均不空
    while (s->lchild != nullptr) //查找最左下结点
    {
        par = s;
        s = s->lchild;
    }
    p->data = s->data;
    if (par == p)  par->rchild = s->rchild; //特殊情况,p的右孩子无左子树
    else par->lchild = s->rchild; 
    delete s;

void BiSortTree :: Release(BiNode *bt)
{
    if (bt == nullptr) return;
    else{
        Release(bt->lchild); //释放左子树
        Release(bt->rchild); //释放右子树
        delete bt; //释放根结点
    }
}

int main( )
{
    BiNode *p = nullptr;
    int arr[10] = {7 ,2, 3, 10, 5, 6, 1, 8, 9, 4};
    BiSortTree B{arr,10}; 
    B.InOrder();
    int key;
    cout << "请输入查找的元素值";
    cin >> key; 
    p = B.SearchBST(key);
    if (p != nullptr) cout << p->data << endl;
    else  cout << "查找失败" << endl;
    system("pause");
    return 0;
}

BiNode *BiSortTree::InsertBST(BiNode *bt, int x)
{
    if (bt == NULL) { //找到插入位置
        BiNode *s = new BiNode; 
        s->data = x;
        s->lchild = NULL;
        s->rchild = NULL;
        bt = s;
        return bt;
    }
    else if (bt->data > x) 
        bt->lchild = InsertBST(bt->lchild, x);
    else
        bt->rchild = InsertBST(bt->rchild, x);
}
BiSortTree::BiSortTree(int a[ ], int n)
{
    root = NULL;
    for (int i = 0; i < n; i++)
        root = InsertBST(root, a[i]);
}
在二叉排序树上删除某个结点之后,仍然保持二叉排序树的特性。
分三种情况讨论:
1、被删除的结点是叶子;
操作:将双亲结点中相应指针域的值改为空。
2、被删除的结点只有左子树或者只有右子树;
操作:将双亲结点的相应指针域的值指向被删除结点的左子树(或右子树)。
3、被删除的结点既有左子树,也有右子树。
操作:以其前驱(左子树中的最大值)替代之,然后再删除该前驱结点。

二叉排序树的删除算法——伪代码
1.若结点p是叶子,则直接删除结点p;
2. 若结点p只有左子树,则只需重接p的左子树;
    若结点p只有右子树,则只需重接p的右子树; 
3. 若结点p的左右子树均不空,则
   3.1 查找结点p的右子树上的最左下结点s及s双亲结点par;
   3.2 将结点s数据域替换到被删结点p的数据域;
   3.3 若结点p的右孩子无左子树,
         则将s的右子树接到par的右子树上;
         否则,将s的右子树接到结点par的左子树上; 
   3.4 删除结点s;
void BiSortTree::DeleteBST(BiNode<int> *p, BiNode<int> *f ) {
    if (!p->lchild && !p->rchild)     
    {   
        if(f->child==p) f->lchild= NULL;  
        else  f->lchild= NULL; 
        delete p;
    }
    else if (!p->rchild) 
    {     //p只有左子树
        if(f->child==p)  f->lchild=p->lchild;
        else f->rchild=p->lchild;
        delete p;
     }
     else if (!p->lchild) 
     {   //p只有右子树
        if(f->child==p)  f->lchild=p->rchild;
        else f->rchild=p->rchild;
        delete p;
    }
    else 
    {   //左右子树均不空
        par=p;  s=p->rchild;  
        while (s->lchild!=NULL)   //查找最左下结点
        {
            par=s;
            s=s->lchild;
        }
        p->data=s->data;
        if (par==p) p->rchild=s->rchild;  //处理特殊情况
        else par->lchild=s->rchild;    //一般情况
        delete s;
    } //左右子树均不空的情况处理完毕
}

在二叉排序树中查找给定值k的过程是:
⑴ 若root是空树,则查找失败;
⑵ 若k=root->data,则查找成功;否则
⑶ 若k<root->data,则在root的左子树上查找;否则
⑷ 在root的右子树上查找。
     上述过程一直持续到k被找到或者待查找的子树为空,如果待查找的子树为空,则查找失败。
二叉排序树的查找效率在于只需查找二个子树之一。
BiNode *BiSortTree::SearchBST(BiNode<int> *root, int k)
{
    if (root==NULL)
        return NULL;
    else if (root->data==k) 
        return root;
    else if (k<root->data) 
        return SearchBST(root->lchild, k);
    else 
        return SearchBST(root->rchild, k);
}


平衡二叉树(AVL树)
平衡二叉树:或者是一棵空的二叉排序树,或者是具有下列性质的二叉排序树:
⑴ 根结点的左子树和右子树的深度最多相差1;
⑵ 根结点的左子树和右子树也都是平衡二叉树。
平衡因子:结点的平衡因子是该结点的左子树的深度与右子树的深度之差。
最小不平衡子树:在平衡二叉树的构造过程中,以距离插入结点最近的、且平衡因子
的绝对值大于1的结点为根的子树。
基本思想:
在构造二叉排序树的过程中,每插入一个结点时,首先检查是否因插入而破坏了树的
平衡性,若是,则找出最小不平衡子树,在保持二叉排序树特性的前提下,调整最小
不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。

在平衡树中,结点的平衡因子可以是1,0,-1。
最小不平衡子树:在平衡二叉树的构造过程中,以距离插入结点最近的、且平衡因子
的绝对值大于1的结点为根的子树。
在一个平衡二叉排序树上插入一个新结点S时,主要包括以下三步: 
(1)查找应插位置, 同时记录离插入位置最近的可能失衡结点A(A的平衡因子不等
于0)。 
(2)插入新结点S, 并修改从A到S路径上各结点的平衡因子。 
(3)根据A、 B的平衡因子, 判断是否失衡以及失衡类型, 并做相应处理。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十只兔子OVO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值