整数因子分解

大于1的正整数 n 都可以分解为 n = x1 * x2 * … * xm, 每个xi为大于1的因子,即1<xi<=n 。

例如:当n=12时,共有8种不同的分解式:
12 = 12
12 = 62
12 = 4
3
12 = 34
12 = 3
22
12 = 2
6
12 = 232
12 = 223

对于给定正整数n,计算n共有多少种不同的分解式。
此题因子讲顺序的.第一个因子可能是2~n之间的数.
比如对12而言,第一个因子可能是2,3,4,6,12.

将第一个因子为2的分解个数,加上第一个因子为3的分解个数,…,直至加到第一个因子为12的分解个数.

而第一个因子为2的分解个数又是多少呢?是对6去做因子分解的个数(因为12/2=6),递归求解!

可用“递归”和“备忘录方法”两种方法分别求解,并测试一下效率。

递归实现整数因子分解的计数。假设对正整数n的因子分解计数为solve(n)。
1)当n=1时,计数加1。
2)当n>1时,对n的每个因子i,计算solve(n/i)。

或者这样实现也可以:

int solve2(int n)
{
    int num=0;

    if(n==1) return 1;

    for(int i=2; i<=n; i++)
        if(n%i == 0) num+=solve2(n/i);

    return num;
}

完整代码::

#include <iostream>

using namespace std;
int solve2(int n)
{
    int num=0;

    if(n==1) return 1;

    for(int i=2; i<=n; i++)
        if(n%i == 0) num+=solve2(n/i);

    return num;
}
int main()
{
    int n;
    cin>>n;


    cout << solve2(n) << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值