周末总结

这几天做了什么: 1:回顾了之前学的东西 2:做了几道区间dp的题 3:写了写老师布置的类的作业,还未完成正在努力。

每个月的确是总有那么几天毫无斗志,这几天就是毫无斗志,做啥都没劲,所以效率真的很低。这几天也没学啥新东西,就把原来的总结一下吧。

背包部分

1:01背包 题目:有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。基本思路:这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放 f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 解释:     若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题; 如果不放第i件物品,则转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];     如果放第i件物品,则转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,最大价值就是f[i-1][v-c[i]]+w[i]。 要注意转化过程。

2,完全背包 题目 :有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

3,多重背包 题目:有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大 。

区间dp部分 区间DP主要是把一个大区间拆分成几个小区间,先求小区间的最优值,然后合并起来求大区间的最优值。做了几道区间dp题目,大致思路就是 首先确定状态 初始化长度为1(or 2,3....具体因题而异)的dp数组的值 然后枚举区间长度,枚举区间的起始点,(有的题目还需要枚举断点) 由小区间转移到大区间。 最后dp[1][n]往往就是答案。

vj上的题目还是挺难的,同学们的进度并不是很快,我也要加油刷题了(ง •̀_•́)ง

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值