拓扑排序

对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。

拓扑排序算法的基本步骤:

  1. 构造一个队列q 和 拓扑排序的结果队列ans;
  2. 把所有没有依赖顶点的节点(即入度为0的点)放入q;
  3. 当q队列非空时,队首元素u出队,u进入ans队列。对所有u开始的边,它的终点v入度均减1。发现新的入度为0的点则将其加入q。重复3直到q为空。

代码:

public class TopologicalSort {
	static ArrayList<Integer>[] e = new ArrayList[1001];
	static Queue<Integer> q = new LinkedList<Integer>();
	static int[] in = new int[1001];
	static int[] ans = new int[1001];
	static int index;
	public static void main(String[] args) throws IOException {
		StreamTokenizer input = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
		int n,m;
		input.nextToken(); n = (int)input.nval;
		input.nextToken(); m = (int)input.nval;
		int u,v;
		for(int i=0;i<=n;i++){
			e[i] = new ArrayList<Integer>();
		}
		for(int i=1;i<=m;i++){
			input.nextToken(); u = (int)input.nval;
			input.nextToken(); v = (int)input.nval;
			e[u].add(v);
			in[v]++;  //记录入度
		}
		
		for(int i=1;i<=n;i++){
			if(in[i]==0){
				q.offer(i);  //将入度为0的点加入队列
			}
		}
		
		while(!q.isEmpty()){
			int p = q.poll();
			ans[index++] = p;
			for(int i=0;i<e[p].size();i++){
				int k = e[p].get(i);
				in[k]--;
				if(in[k]==0){
					q.offer(k);
				}
			}
		}
		
		if(index==n){   //不为N说明存在环
			for(int i=0;i<index;i++){
				System.out.println(ans[i]);
			}
		}else{
			System.out.println("不存在拓扑序");
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值