pandas3 DataFrame数据的查询编辑

3.DataFrame数据的查询和编辑

查询【一般都是通过索引来操作的】
1.选取列

通过列索引标签或者属性的方式可以单独获取DataFrame的列数据,返回数据类型为Series。在选取列时不能使用切片的方式,超过一个列名用df[['列名1','列名2']]

#选取列
import pandas as pd
import numpy as np
data = {
    'name':['张三','李四','王麻子'],
    'age':[21,19,23],
    'address':['兰州','上海','北京']
}
df = pd.DataFrame(data)
print(df)
w1 = df['name']
print("以列名取一列数据:\n", w1)
w2 = df[['name','age']]
print("以列名取两份数据:\n", w2)

name  age address
0   张三   21      兰州
1   李四   19      上海
2  王麻子   23      北京
以列名取一列数据:
 0     张三
1     李四
2    王麻子
Name: name, dtype: object
以列名取两份数据:
   name  age
0   张三   21
1   李四   19
2  王麻子   23
2.选取行

通过行索引或者行索引位置切片形式获取行数据【从0开始的,左闭右开】。DataFrame提供的head【开头开始】和tail【结尾】可以取连续多行数据,sample可以随机抽取并显示数据

#取行  从0开始的
print('显示前两行:\n', df[:2])
print('显示2行:\n', df[1:2])
#head从第一行取,默认前五行
print(df.head())
print(df.head(1))
#tail默认最后五行   可以带数字取最后的
print(df.tail())
print(df.tail(1))
#sample随机抽取n行显示
print(df.sample(2))
显示前两行:
   name  age address
0   张三   21      兰州
1   李四   19      上海
显示2行:
   name  age address
1   李四   19      上海
  name  age address
0   张三   21      兰州
1   李四   19      上海
2  王麻子   23      北京
  name  age address
0   张三   21      兰州
  name  age address
0   张三   21      兰州
1   李四   19      上海
2  王麻子   23      北京
  name  age address
2  王麻子   23      北京
  name  age address
2  王麻子   23      北京
1   李四   19      上海
3.读取行和列

切片选取行限制比较大,取单独的几行数据可以采用Pandas提供的iloc和loc方法实现。

用法:DataFrame.loc(行索引位置, 列索引位置)

​ DataFrame.loc(行索引名称或条件, 列索引名称)

#loc
data = {
	'name':['张飞', '孙尚香', '韩信', '貂蝉', '马超'],
	'location':['游走', '下路', '打野', '中单', '上单'],
	'dynasty':['蜀', '蜀', '战国', '汉', '蜀'],
	'year':[1999, 2000, 2020, 2050, 3030]
}
df1 = pd.DataFrame(data, columns=['name','location','dynasty','address','year'],index=['a','b','c','d','e'])
df2 = df1.set_index('dynasty')
print(df2)
print("取name和year两列的数据:\n",df2.loc[:,['name','year']])
print("取汉,战国行中name,year的数据:\n",df2.loc[['汉','战国'],['name','year']])
        name location address  year
dynasty                            
蜀         张飞       游走     NaN  1999
蜀        孙尚香       下路     NaN  2000
战国        韩信       打野     NaN  2020
汉         貂蝉       中单     NaN  2050
蜀         马超       上单     NaN  3030
取name和year两列的数据:
         name  year
dynasty           
蜀         张飞  1999
蜀        孙尚香  2000
战国        韩信  2020
汉         貂蝉  2050
蜀         马超  3030
取汉,战国行中name,year的数据:
         name  year
dynasty           
汉         貂蝉  2050
战国        韩信  2020
#iloc  [索引0开始]
print("显示前两列:\n", df2.iloc[:, 2])
print("显示第1和第3行的第2列:\n", df2.iloc[[1,3],[0]])
显示前两列:
 dynasty
蜀     19992000
战国    202020503030
Name: year, dtype: int64
显示第1和第3行的第二列:
         name
dynasty     
蜀        孙尚香
汉         貂蝉

也可以使用ix方法实现行和列的选择,同时支持索引标签和索引位置取值。

4.布尔选择

用选择符不等于(!=)、与(&)、或(|)

df3 = df2[df2['year'] == 3030]
print(df3,type(df3))#返回dataframe型
df2['name']=='孙尚香'#返回布尔类型
        name location  year
dynasty                    
蜀         马超       上单  3030 <class 'pandas.core.frame.DataFrame'>

dynasty
蜀     FalseTrue
战国    FalseFalseFalse
Name: name, dtype: bool
编辑【提取需要编辑的数据,重新赋值】
1.增加数据

增加一行通过append方法传入字典结构数据即可,增加列时为增加的列赋值即可创建一个新的列,具体给值要对应,不然会报错

#插入一行数据append
#加列并赋值
df1['C'] = 10
df1['age'] = [24,33,19,40,80]

data1 = {
    'name':'李白',
    'location':'打野',
    'dynasty':'唐',
    'year':'1909'
}
df1.append(data1,ignore_index=True)
  name location dynasty  year   C  age
0   张飞       游走       蜀  1999  10   24
1  孙尚香       下路       蜀  2000  10   33
2   韩信       打野      战国  2020  10   19
3   貂蝉       中单       汉  2050  10   40
4   马超       上单       蜀  3030  10   80

name	location	dynasty	year	C	age
0	张飞	游走	蜀	1999	10.0	24.0
1	孙尚香	下路	蜀	2000	10.0	33.0
2	韩信	打野	战国	2020	10.0	19.0
3	貂蝉	中单	汉	2050	10.0	40.0
4	马超	上单	蜀	3030	10.0	80.0
5	李白	打野	唐	1909	NaN
2.删除数据

删除数据直接用drop方法,行列数据通过axis参数设置默认为0删除行,1删除列。默认数据删除不修改原数据,如果在原数据上删除加入参数inplace=True即可。

#删除数据的行和列  没有指定inplace=True,删除不是在原数据上操作的
df1.drop('C',axis=1)
print(df1)
  name location dynasty  year   C  age
0   张飞       游走       蜀  1999  10   24
1  孙尚香       下路       蜀  2000  10   33
2   韩信       打野      战国  2020  10   19
3   貂蝉       中单       汉  2050  10   40
4   马超       上单       蜀  3030  10   80

df1.drop('C',axis=1,inplace=True)
print(df1)

  name location dynasty  year  age
0   张飞       游走       蜀  1999   24
1  孙尚香       下路       蜀  2000   33
2   韩信       打野      战国  2020   19
3   貂蝉       中单       汉  2050   40
4   马超       上单       蜀  3030   80
3.修改数据

对选择的数据进行赋值就可以了。**修改数据是对DataFrame值的修改,无法撤销。**如新列赋值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值