关键路径

关键路径

完成工程的最短时间?

关键路径 critical path:从“源点”到“汇点”的‘最长路径’长度

1、事件的最早发生时间 ee(j)

从源点到vj的‘最长路径长度

事件发生后,其出边活动才能开始

计算1个顶点的ee值,需已知其所有入边上起点的ee值

  • 源点:ee(0)= 0
  • ee(j)= max{ee(i) + weight<vi, vj> }

从”源点”开始,按拓扑序后递推

2、事件的最迟发生时间 le(i)

计算1个顶点的le值,需已知其所有出边上终点的le值

  • 汇点:允许的最迟 == 最早发生时间

    • le(n-1) == ee(n-1)
  • 其余:不能影响其后继事件 vj 的最迟发生时间

    • le(i) = min{ le(j) - weight<vi, vj>}

汇点开始,逆拓扑序前倒推

3、活动的最早开工时间 e(k)

设活动ak=<vi, vj>,可能的最早开工时间e(k):

  • 该边上,起点vi(事件vi )的最早发生时间
    • e(k) = ee(i)
4、活动的最晚开工时间 l(k)

设活动ak=<vi, vj>,允许的最晚开工时间l(k):

  • l(k)不能影响:其终点vj的最迟发生时间;

    • l(k) = le(j) - weight<vi, vj>
5、关键活动

能开始,就必须开始的活动:不容有误

关键活动,不允许有任何时间延误

  • 最早开工时间 == 最迟开工时间
    • l(k)==e(k)

例子

在这里插入图片描述

1、事件的最早发生时间ee:按拓扑序, 利用所有入边起点的ee值
2、事件的最迟发生时间le:逆拓扑序, 利用所有出边终点的le值
3、活动的最早开工时间e:= 起点事件的ee
4、活动的最晚开工时间l: 终点的le值-边长
5、判断关键活动:if e(ak) == l(ak)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值