目录
关键路径
完成工程的最短时间?
关键路径 critical path:从“源点”到“汇点”的‘最长路径’长度
1、事件的最早发生时间 ee(j)
从源点到vj的‘最长路径长度
事件发生后,其出边活动才能开始
计算1个顶点的ee值,需已知其所有入边上起点的ee值
- 源点:ee(0)= 0
- ee(j)= max{ee(i) + weight<vi, vj> }
从”源点”开始,按拓扑序向后递推
2、事件的最迟发生时间 le(i)
计算1个顶点的le值,需已知其所有出边上终点的le值
-
汇点:允许的最迟 == 最早发生时间
- le(n-1) == ee(n-1)
-
其余:不能影响其后继事件 vj 的最迟发生时间
- le(i) = min{ le(j) - weight<vi, vj>}
从汇点开始,逆拓扑序向前倒推
3、活动的最早开工时间 e(k)
设活动ak=<vi, vj>,可能的最早开工时间e(k):
- 该边上,起点vi(事件vi )的最早发生时间
- e(k) = ee(i)
4、活动的最晚开工时间 l(k)
设活动ak=<vi, vj>,允许的最晚开工时间l(k):
-
l(k)不能影响:其终点vj的最迟发生时间;
- l(k) = le(j) - weight<vi, vj>
5、关键活动
能开始,就必须开始的活动:不容有误
关键活动,不允许有任何时间延误
- 最早开工时间 == 最迟开工时间
- l(k)==e(k)