分治法的应用----求一个序列中第K大或第K小的数

思想

借助快速排序的划分思想,如果是求第K小的数,则一次划分所得到的基准元素的位置pivot即为第pivot+1小的数(数组下标从0开始)。将其和K进行比较,如果等于K,则输出元素即可,否则如果小于K,则说明第K小的值在其右边,应往右子序列递归查找,如果大于K,则说明在其左边,应往左子序列递归。
如果要求第K大的数,则应从右往左数,定义pos=right-pivot+1,得到的为第pos大的数,然后将该值与K比较,若大于K,则往pivot右边子序列递归查找,否则往左边子序列递归查找。需要注意的是,在往左边递归时,寻找的应是第K-pos大的数。

#include<iostream>

using namespace std;
const int MAX = 10;//序列长度

int Partiton(int a[], int left, int right) {//快速排序的划分
    int temp = a[left];
    while (left < right) {
        while (left < right && a[right] >= temp) right--;
        a[left] = a[right];
        while (left < right && a[left] <= temp) left++;
        a[right] = a[left];
    }
    a[left] = temp;
    return left;
}
//求序列[left,right]中第K小的数
int RandSelect_Min(int a[], int left, int right, int K) {
    if (left < right) {
        int pivot = Partiton(a, left, right);
        if (pivot + 1 == K)//找到了第K小的数
            return a[pivot];
        else if (pivot + 1 < K)//往右递归
            RandSelect_Min(a, pivot + 1, right, K);
        else//往左递归
            RandSelect_Min(a, left, pivot - 1, K);
    } else if (left == right && K == left + 1) {//序列只有一个元素,且为a[k-1]
        return a[left];
    } else {
        return -99999;//K的值不合法
    }
}
//求序列[left,right]中第K大的数
int RandSelect_Max(int a[], int left, int right, int K) {
    if (left < right) {
        int pivot = Partiton(a, left, right);
        int pos = right - pivot + 1;//为从右往左数,第pos大的数
        if (pos == K)
            return a[pivot];
        else if (pos > K)//pos位于K的左边,往右递归
            RandSelect_Max(a, pivot + 1, right, K);
        else//pos位于K的右边,往左递归
            RandSelect_Max(a, left, pivot - 1, K - pos);//此时K应为K-pos
    } else if (left == right && K == MAX - left) {//序列只有一个元素,且刚好为第K大
        return a[left];
    } else {
        return -99999;
    }
}

int main() {
    int a[MAX] = {2, 5, 1, 7, 10, 6, 9, 4, 3, 8};
    for (int i = 1; i <= 10; ++i) {
        cout << "第" << i << "小的数为:" << RandSelect_Min(a, 0, 9, i) << endl;
    }
    for (int i = 1; i <= 10; ++i) {
        cout << "第" << i << "大的数为:" << RandSelect_Max(a, 0, 9, i) << endl;
    }
    return 0;
}

典型实例

https://blog.csdn.net/qq_43643944/article/details/116072737

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Missヾaurora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值