思想
Kruskal算法采用贪心策略,每次选择一条权值最小的边,加入到生成树当中,要求加入后不能出现环,直到n个顶点均加入为止。
对于图G(V,E),初始状态将其视作只有n个顶点,无边的非连通图T,每个顶点单独作为一个连通分量,每次从E中选择权值最小的边,如果这条边的两个顶点落在T中不同的连通分量中,则将该边加入到T当中,否则舍弃,继续选择下一条边,以此类推,直到T中边数等于顶点数-1。
具体实现:对所有的边进行从小到大排序,当选取一条边时,采用并查集来判断该边所依附的两个顶点是否在同一集合当中,即可将并查集抽象为最小生成树,当要将该边加入最小生成树T中时,即将两个顶点合并到并查集中。
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXV = 100;
const int MAXE = 10000;
struct Edge { //定义边结点
int u, v;//边的两个顶点
int cost;//边权
} edge[MAXE];//边表
bool cmp(Edge a, Edge b) { //比较函数
return a.cost < b.cost;
}
int father[MAXV];//并查集
int findFather(int x) { //并查集查找,及判断两个顶点是否在同一集合当中
int a = x;
while (x != father[x])
x = father[x];
while (a != father[a]) { //查找优化
int z = a;
a = father[a];
father[z] = x;
}
return x;
}
int Kruskal(int n, int m) { //n为顶点,m为边
int ans = 0, edgeNum = 0;
for (int i = 0; i < n; ++i) {
father[i] = i;
}
sort(edge, edge + m, cmp); //对所有边按权值递增排序
for (int j = 0; j < m; ++j) {
int fatherU = findFather(edge[j].u);
int fatherV = findFather(edge[j].v);
if (fatherU != fatherV) { //两个顶点不在同一个集合当中
father[fatherU] = fatherV;//合并集合,即将该边加入最小生成树当中
ans += edge[j].cost;//累加边权
edgeNum++;//最小生成树边数+1
if (edgeNum == n - 1) break;//边数等于顶点数-1
}
}
if (edgeNum != n - 1) return -1;
else return ans;//返回边权之和
}