chapter §35 求最小生成树----Kruskal算法

思想

Kruskal算法采用贪心策略,每次选择一条权值最小的边,加入到生成树当中,要求加入后不能出现环,直到n个顶点均加入为止。
对于图G(V,E),初始状态将其视作只有n个顶点,无边的非连通图T,每个顶点单独作为一个连通分量,每次从E中选择权值最小的边,如果这条边的两个顶点落在T中不同的连通分量中,则将该边加入到T当中,否则舍弃,继续选择下一条边,以此类推,直到T中边数等于顶点数-1。
具体实现:对所有的边进行从小到大排序,当选取一条边时,采用并查集来判断该边所依附的两个顶点是否在同一集合当中,即可将并查集抽象为最小生成树,当要将该边加入最小生成树T中时,即将两个顶点合并到并查集中。

#include <iostream>
#include <algorithm>

using namespace std;

const int MAXV = 100;
const int MAXE = 10000;
struct Edge { //定义边结点
    int u, v;//边的两个顶点
    int cost;//边权
} edge[MAXE];//边表

bool cmp(Edge a, Edge b) { //比较函数
    return a.cost < b.cost;
}

int father[MAXV];//并查集

int findFather(int x) { //并查集查找,及判断两个顶点是否在同一集合当中
    int a = x;
    while (x != father[x])
        x = father[x];
    while (a != father[a]) { //查找优化
        int z = a;
        a = father[a];
        father[z] = x;
    }
    return x;
}

int Kruskal(int n, int m) { //n为顶点,m为边
    int ans = 0, edgeNum = 0;
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
    sort(edge, edge + m, cmp); //对所有边按权值递增排序
    for (int j = 0; j < m; ++j) {
        int fatherU = findFather(edge[j].u);
        int fatherV = findFather(edge[j].v);
        if (fatherU != fatherV) { //两个顶点不在同一个集合当中
            father[fatherU] = fatherV;//合并集合,即将该边加入最小生成树当中
            ans += edge[j].cost;//累加边权
            edgeNum++;//最小生成树边数+1
            if (edgeNum == n - 1) break;//边数等于顶点数-1
        }
    }
    if (edgeNum != n - 1) return -1;
    else return ans;//返回边权之和
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Missヾaurora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值