题目描述
上课的时候总会有一些同学和前后左右的人交头接耳,这是令小学班主任十分头疼的一件事情。不过,班主任小雪发现了一些有趣的现象,当同学们的座次确定下来之后,只有有限的D对同学上课时会交头接耳。
同学们在教室中坐成了M行N列,坐在第i行第j列的同学的位置是(i,j),为了方便同学们进出,在教室中设置了K条横向的通道,L条纵向的通道。
于是,聪明的小雪想到了一个办法,或许可以减少上课时学生交头接耳的问题:她打算重新摆放桌椅,改变同学们桌椅间通道的位置,因为如果一条通道隔开了2个会交头接耳的同学,那么他们就不会交头接耳了。
请你帮忙给小雪编写一个程序,给出最好的通道划分方案。在该方案下,上课时交头接耳的学生的对数最少。
输入输出格式
输入格式:
第一行,有55个用空格隔开的整数,分别是M,N,K,L,D(2 <= N,M <= 1000,0 <=K<M,0<=L<N,D<=2000)
接下来的D行,每行有4个用空格隔开的整数。第i行的4个整数Xi,Yi,Pi,Qi,表示坐在位置(Xi,Yi)与(Pi,Qi)的两个同学会交头接耳(输入保证他们前后相邻或者左右相邻)。
输入数据保证最优方案的唯一性。
输入输出样例
输入样例#1:
4 5 1 2 3 4 2 4 3 2 3 3 3 2 5 2 4
输出样例#1:
2
2 4
说明
上图中用符号*、※、+标出了33对会交头接耳的学生的位置,图中33条粗线的位置表示通道,图示的通道划分方案是唯一的最佳方案。
题目来源https://www.luogu.org/problemnew/show/P1056
思路
只要找出划分哪些相邻的两行和相邻的两列可以隔开的同学最多,此题即解。
先定义两个数组a[N],b[N],a[1]表示在第一列与第二列中间划分过道能够分开几组说话的同学,a[2]则是第二列与第三列... 直到a[n-1],b[1]表示第一行与第二行,b[2]表示第二行与第三行... 直到b[m-1]。
输入两个同学的坐标,如果横坐标相同,即这两个同学在一行,那么设两个同学纵坐标分别为y,q,那么a[min(y,q)]++。同理,b数组也如此操作即可。
最后a,b数组分别扫一遍,然后桶排一下即可。
代码
#include<stdio.h>
#include<algorithm>
using namespace std;
const int N=2007;
int main()
{
int m,n,k,l,d,i;
int x,y,p,q,a[N],b[N],c[N],e[N];
scanf("%d%d%d%d%d",&m,&n,&k,&l,&d);
for(i=0;i<d;i++)
{
scanf("%d%d%d%d",&x,&y,&p,&q);
if(x==p)
{
a[min(y,q)]++;//表示隔开这两排可以隔开多少对上课时交头接耳的学生
}
else
{
b[min(x,p)]++;//表示隔开这两行可以隔开多少对上课时交头接耳的学生
}
}
for(i=1;i<=k;i++)//桶排序,寻找b[i]最大时的下标i
{
int maxn=-1;//为了求出每次的最大值,需要每次扫一遍
int t;
for(int j=1;j<m;j++)
{
if(b[j]>maxn)
{
maxn=b[j];
t=j;//记录最大值的下标
}
}
b[t]=0;//求出max之后一定要记得清零!!否则无论排多少次都是一个答案
c[t]++;
}
for(i=1;i<=l;i++)
{
int maxn=-1;
int t;
for(int j=1;j<n;j++)
{
if(a[j]>maxn)
{
maxn=a[j];
t=j;
}
}
a[t]=0;
e[t]++;
}
int g=0;
for(i=0;i<m;i++)
{
if(c[i]&&g==0)
{
printf("%d",i);
g=1;
}
else if(c[i]&&g==1)
{
printf(" %d",i);
}
}
printf("\n");
g=0;
for(i=0;i<n;i++)
{
if(e[i]&&g==0)
{
printf("%d",i);
g=1;
}
else if(e[i]&&g==1)
{
printf(" %d",i);
}
}
return 0;
}