重积分定义
Riemann可积:将区域分为直径足够小的每一个小块,每一个小块内取任意一点的函数值作为小块的函数值,然后加起来,即Riemann和,如果这个值有极限则可积。
二重积分
二元函数
f
(
x
,
y
)
f(x,y)
f(x,y)在矩形域
I
I
I上间断点为零测集,则在
I
I
I上可积,记作
f
∈
R
(
I
)
f\in R(I)
f∈R(I),另
d
σ
d\sigma
dσ为面积微元,则二重积分写为:
∬
I
f
d
σ
\iint _I fd\sigma
∬Ifdσ
- 若在有界闭集 D D D上,则用足够大的矩形域 I I I框住 D D D,并且 f ( x , y ) f(x,y) f(x,y)在 I / D I/D I/D上为0,此时可积条件等价于: ∂ D \partial D ∂D为零测集, D D D内部间断点为零测集
重积分关于区域可加性:
- 在满足上述条件后,再要求 D 1 ∩ D 2 D_1\cap D_2 D1∩D2为零测集时:
∬ D 1 ∪ D 2 f d σ = ∬ D 1 f d σ + ∬ D 2 f d σ \iint_{D_1\cup D_2}fd\sigma=\iint _{D_1}fd\sigma+\iint_{D_2} fd\sigma ∬D1∪D2fdσ=∬D1fdσ+∬D2fdσ
积分中值定理:
- D D D是 R 2 \R^2 R2上的道路连通有界闭集,边界为零测集, f , g f,g f,g为连续函数,且 g g g在 D D D上不变号,则:
∃ ( a , b ) ∈ D ∬ D f ( x , y ) g ( x , y ) d x d y = f ( a , b ) ∬ D g ( x , y ) d x d y \exist (a,b)\in D\\ \iint_Df(x,y)g(x,y)dxdy=f(a,b)\iint_D g(x,y)dxdy ∃(a,b)∈D∬Df(x,y)g(x,y)dxdy=f(a,b)∬Dg(x,y)dxdy
重积分与累次积分
在矩形区域 I = [ a , b ] × [ c , d ] I=[a,b]\times [c,d] I=[a,b]×[c,d]上
-
设 f ∈ R ( I ) f\in R(I) f∈R(I)
-
若 f ( x , y ) f(x,y) f(x,y)关于 y y y在 [ c , d ] [c,d] [c,d]上可积,则
∬ I f d σ = ∫ a b d x ∫ c d f ( x , y ) d y \iint _{I} f d\sigma=\int_a^bdx\int_c^df(x,y)dy ∬Ifdσ=∫abdx∫cdf(x,y)dy
- 反之亦然
在一般区域 x ∈ [ a , b ] , y ∈ [ y 1 ( x ) , y 2 ( x ) ] x\in[a,b],y\in[y_1(x),y_2(x)] x∈[a,b],y∈[y1(x),y2(x)]上
- 若 ∫ y 1 ( x ) y 2 ( x ) f ( x , y ) d y \int_{y_1(x)}^{y_2(x)}f(x,y)dy ∫y1(x)y2(x)f(x,y)dy存在,则
∬ D f ( x , y ) d x d y = ∫ a b d x ∫ y 1 ( x ) y 2 ( x ) f ( x , y ) d y \iint _Df(x,y)dxdy=\int_a^bdx\int_{y_1(x)}^{y_2(x)}f(x,y)dy ∬Df(x,y)dxdy=∫abdx∫y1(x)y2(x)f(x,y)dy
特别强调,一定要 a ≤ b a\le b a≤b才可以转化为重积分
重积分的计算
有两种方法:交换积分次序和变量代换
-
根据积分区域转化为累次积分,再交换积分顺序
-
变量代换:
一般变量代换
d x d y d z = ∣ d e t ( ∂ ( x , y , z ) ∂ ( u , v , w ) ) ∣ d u d v d w dxdydz=\Big|det\big(\frac{\partial (x,y,z)}{\partial (u,v,w)}\big)\Big|dudvdw dxdydz=∣∣∣det(∂(u,v,w)∂(x,y,z))∣∣∣dudvdw
利用极坐标表示,在有圆的结构时可以使用- 二维极坐标:
x = r cos θ , y = r sin θ d x d y = r d r d θ x=r\cos \theta,y=r\sin \theta\\ dxdy=rdrd\theta x=rcosθ,y=rsinθdxdy=rdrdθ
- 三维极坐标( θ \theta θ为与北极线的夹角, φ \varphi φ为投影到 x y xy xy平面内与 x x x轴的夹角)
x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ d x d y d z = r 2 sin θ d r d φ d θ x=r \sin \theta \cos \varphi,y=r\sin \theta \sin \varphi,z=r\cos \theta \\ dxdydz=r^2\sin \theta drd\varphi d\theta x=rsinθcosφ,y=rsinθsinφ,z=rcosθdxdydz=r2sinθdrdφdθ
-
般变量代换
重积分的应用
曲面面积问题:
- 在参数方程 ( x , y , z ) = f ( u , v ) (x,y,z)=f(u,v) (x,y,z)=f(u,v)下
r u = ( ∂ x ∂ u , ∂ y ∂ u , ∂ z ∂ u ) r v = ( ∂ x ∂ v , ∂ y ∂ v , ∂ z ∂ v ) d S = d e t ∣ r u ⋅ r u r u ⋅ r v r v ⋅ r u r v ⋅ r v ∣ d u d v r_u=(\frac{\partial x}{\partial u},\frac{\partial y}{\partial u},\frac{\partial z}{\partial u})\\ r_v=(\frac{\partial x}{\partial v},\frac{\partial y}{\partial v},\frac{\partial z}{\partial v})\\ dS=\sqrt{det\begin{vmatrix} r_u\cdot r_u & r_u\cdot r_v\\ r_v\cdot r_u & r_v\cdot r_v \end{vmatrix}}dudv ru=(∂u∂x,∂u∂y,∂u∂z)rv=(∂v∂x,∂v∂y,∂v∂z)dS=det∣∣∣∣ru⋅rurv⋅ruru⋅rvrv⋅rv∣∣∣∣dudv
- d u , d v du,dv du,dv前的系数恰好是 r u , r v r_u,r_v ru,rv张成的平行四边形的面积
∬ Ω d S = ∬ Ω ∗ d e t ∣ r u ⋅ r u r u ⋅ r v r v ⋅ r u r v ⋅ r v ∣ d u d v \iint _\Omega dS=\iint _{\Omega^*}\sqrt{det\begin{vmatrix} r_u\cdot r_u & r_u\cdot r_v\\ r_v\cdot r_u & r_v\cdot r_v \end{vmatrix}}dudv ∬ΩdS=∬Ω∗det∣∣∣∣ru⋅rurv⋅ruru⋅rvrv⋅rv∣∣∣∣dudv
- 特别的在 ( x , y , z ) = ( x , y , z ( x , y ) ) (x,y,z)=(x,y,z(x,y)) (x,y,z)=(x,y,z(x,y))下
d S = 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y dS=\sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}dxdy dS=1+(∂x∂z)2+(∂y∂z)2dxdy
质心问题:
- x ‾ = ∭ Ω x ρ ( x , y , z ) d x d y d z ∭ Ω ρ ( x , y , z ) d x d y d z \overline{x}=\frac{\iiint_\Omega x\rho (x,y,z)dxdydz}{\iiint_\Omega \rho(x,y,z)dxdydz} x=∭Ωρ(x,y,z)dxdydz∭Ωxρ(x,y,z)dxdydz
转动惯量:
- 绕 x x x轴转动惯量记为 J x J_x Jx
J x = ∭ Ω ( y 2 + z 2 ) ρ ( x , y , z ) d x d y d z J_x=\iiint _\Omega (y^2+z^2)\rho(x,y,z)dxdydz Jx=∭Ω(y2+z2)ρ(x,y,z)dxdydz
引力问题:
- 在 z z z轴方向上的引力大小:
F z = − ∭ Ω G m r 2 cos γ d m = − ∭ Ω G m x 2 + y 2 + z 2 ⋅ z x 2 + y 2 + z 2 ⋅ ρ ( x , y , z ) d x d y d z F_z=-\iiint_\Omega\frac{Gm}{r^2}\cos \gamma dm\\ =-\iiint _\Omega \frac{Gm}{x^2+y^2+z^2}\cdot \frac{z}{\sqrt{x^2+y^2+z^2}}\cdot \rho(x,y,z)dxdydz Fz=−∭Ωr2Gmcosγdm=−∭Ωx2+y2+z2Gm⋅x2+y2+z2z⋅ρ(x,y,z)dxdydz