重积分定理与计算总结

重积分定义

Riemann可积:将区域分为直径足够小的每一个小块,每一个小块内取任意一点的函数值作为小块的函数值,然后加起来,即Riemann和,如果这个值有极限则可积。

二重积分

二元函数 f ( x , y ) f(x,y) f(x,y)在矩形域 I I I上间断点为零测集,则在 I I I上可积,记作 f ∈ R ( I ) f\in R(I) fR(I),另 d σ d\sigma dσ为面积微元,则二重积分写为:
∬ I f d σ \iint _I fd\sigma Ifdσ

  • 若在有界闭集 D D D上,则用足够大的矩形域 I I I框住 D D D,并且 f ( x , y ) f(x,y) f(x,y) I / D I/D I/D上为0,此时可积条件等价于: ∂ D \partial D D为零测集, D D D内部间断点为零测集

重积分关于区域可加性:

  • 在满足上述条件后,再要求 D 1 ∩ D 2 D_1\cap D_2 D1D2为零测集时:

∬ D 1 ∪ D 2 f d σ = ∬ D 1 f d σ + ∬ D 2 f d σ \iint_{D_1\cup D_2}fd\sigma=\iint _{D_1}fd\sigma+\iint_{D_2} fd\sigma D1D2fdσ=D1fdσ+D2fdσ

积分中值定理:

  • D D D R 2 \R^2 R2上的道路连通有界闭集,边界为零测集, f , g f,g f,g为连续函数,且 g g g D D D上不变号,则:

∃ ( a , b ) ∈ D ∬ D f ( x , y ) g ( x , y ) d x d y = f ( a , b ) ∬ D g ( x , y ) d x d y \exist (a,b)\in D\\ \iint_Df(x,y)g(x,y)dxdy=f(a,b)\iint_D g(x,y)dxdy (a,b)DDf(x,y)g(x,y)dxdy=f(a,b)Dg(x,y)dxdy

重积分与累次积分

在矩形区域 I = [ a , b ] × [ c , d ] I=[a,b]\times [c,d] I=[a,b]×[c,d]

  • f ∈ R ( I ) f\in R(I) fR(I)

  • f ( x , y ) f(x,y) f(x,y)关于 y y y [ c , d ] [c,d] [c,d]上可积,则

∬ I f d σ = ∫ a b d x ∫ c d f ( x , y ) d y \iint _{I} f d\sigma=\int_a^bdx\int_c^df(x,y)dy Ifdσ=abdxcdf(x,y)dy

  • 反之亦然

在一般区域 x ∈ [ a , b ] , y ∈ [ y 1 ( x ) , y 2 ( x ) ] x\in[a,b],y\in[y_1(x),y_2(x)] x[a,b],y[y1(x),y2(x)]

  • ∫ y 1 ( x ) y 2 ( x ) f ( x , y ) d y \int_{y_1(x)}^{y_2(x)}f(x,y)dy y1(x)y2(x)f(x,y)dy存在,则

∬ D f ( x , y ) d x d y = ∫ a b d x ∫ y 1 ( x ) y 2 ( x ) f ( x , y ) d y \iint _Df(x,y)dxdy=\int_a^bdx\int_{y_1(x)}^{y_2(x)}f(x,y)dy Df(x,y)dxdy=abdxy1(x)y2(x)f(x,y)dy

特别强调,一定要 a ≤ b a\le b ab才可以转化为重积分

重积分的计算

有两种方法:交换积分次序变量代换

  • 根据积分区域转化为累次积分,再交换积分顺序

  • 变量代换:

    一般变量代换
    d x d y d z = ∣ d e t ( ∂ ( x , y , z ) ∂ ( u , v , w ) ) ∣ d u d v d w dxdydz=\Big|det\big(\frac{\partial (x,y,z)}{\partial (u,v,w)}\big)\Big|dudvdw dxdydz=det((u,v,w)(x,y,z))dudvdw
    利用极坐标表示,在有圆的结构时可以使用

    • 二维极坐标:

    x = r cos ⁡ θ , y = r sin ⁡ θ d x d y = r d r d θ x=r\cos \theta,y=r\sin \theta\\ dxdy=rdrd\theta x=rcosθ,y=rsinθdxdy=rdrdθ

    • 三维极坐标( θ \theta θ为与北极线的夹角, φ \varphi φ为投影到 x y xy xy平面内与 x x x轴的夹角)

    x = r sin ⁡ θ cos ⁡ φ , y = r sin ⁡ θ sin ⁡ φ , z = r cos ⁡ θ d x d y d z = r 2 sin ⁡ θ d r d φ d θ x=r \sin \theta \cos \varphi,y=r\sin \theta \sin \varphi,z=r\cos \theta \\ dxdydz=r^2\sin \theta drd\varphi d\theta x=rsinθcosφ,y=rsinθsinφ,z=rcosθdxdydz=r2sinθdrdφdθ

  • 般变量代换

重积分的应用

曲面面积问题:

  • 在参数方程 ( x , y , z ) = f ( u , v ) (x,y,z)=f(u,v) (x,y,z)=f(u,v)

r u = ( ∂ x ∂ u , ∂ y ∂ u , ∂ z ∂ u ) r v = ( ∂ x ∂ v , ∂ y ∂ v , ∂ z ∂ v ) d S = d e t ∣ r u ⋅ r u r u ⋅ r v r v ⋅ r u r v ⋅ r v ∣ d u d v r_u=(\frac{\partial x}{\partial u},\frac{\partial y}{\partial u},\frac{\partial z}{\partial u})\\ r_v=(\frac{\partial x}{\partial v},\frac{\partial y}{\partial v},\frac{\partial z}{\partial v})\\ dS=\sqrt{det\begin{vmatrix} r_u\cdot r_u & r_u\cdot r_v\\ r_v\cdot r_u & r_v\cdot r_v \end{vmatrix}}dudv ru=(ux,uy,uz)rv=(vx,vy,vz)dS=detrururvrururvrvrv dudv

  • d u , d v du,dv du,dv前的系数恰好是 r u , r v r_u,r_v ru,rv张成的平行四边形的面积

∬ Ω d S = ∬ Ω ∗ d e t ∣ r u ⋅ r u r u ⋅ r v r v ⋅ r u r v ⋅ r v ∣ d u d v \iint _\Omega dS=\iint _{\Omega^*}\sqrt{det\begin{vmatrix} r_u\cdot r_u & r_u\cdot r_v\\ r_v\cdot r_u & r_v\cdot r_v \end{vmatrix}}dudv ΩdS=Ωdetrururvrururvrvrv dudv

  • 特别的在 ( x , y , z ) = ( x , y , z ( x , y ) ) (x,y,z)=(x,y,z(x,y)) (x,y,z)=(x,y,z(x,y))

d S = 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y dS=\sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}dxdy dS=1+(xz)2+(yz)2 dxdy

质心问题:

  • x ‾ = ∭ Ω x ρ ( x , y , z ) d x d y d z ∭ Ω ρ ( x , y , z ) d x d y d z \overline{x}=\frac{\iiint_\Omega x\rho (x,y,z)dxdydz}{\iiint_\Omega \rho(x,y,z)dxdydz} x=Ωρ(x,y,z)dxdydzΩxρ(x,y,z)dxdydz

转动惯量:

  • x x x轴转动惯量记为 J x J_x Jx

J x = ∭ Ω ( y 2 + z 2 ) ρ ( x , y , z ) d x d y d z J_x=\iiint _\Omega (y^2+z^2)\rho(x,y,z)dxdydz Jx=Ω(y2+z2)ρ(x,y,z)dxdydz

引力问题:

  • z z z轴方向上的引力大小:

F z = − ∭ Ω G m r 2 cos ⁡ γ d m = − ∭ Ω G m x 2 + y 2 + z 2 ⋅ z x 2 + y 2 + z 2 ⋅ ρ ( x , y , z ) d x d y d z F_z=-\iiint_\Omega\frac{Gm}{r^2}\cos \gamma dm\\ =-\iiint _\Omega \frac{Gm}{x^2+y^2+z^2}\cdot \frac{z}{\sqrt{x^2+y^2+z^2}}\cdot \rho(x,y,z)dxdydz Fz=Ωr2Gmcosγdm=Ωx2+y2+z2Gmx2+y2+z2 zρ(x,y,z)dxdydz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值