基于MOOC嵩天《Python网络爬虫与信息提取》视频学习记录——第三周:正则表达式

1.正则表达式的语法

正则表达式的常用操作符

在这里插入图片描述
在这里插入图片描述

正则表达式语法实例

在这里插入图片描述

经典正则表达式实例

在这里插入图片描述

匹配ip地址的正则表达式

在这里插入图片描述

2.re库的基本使用

正则表达式的表示类型

在这里插入图片描述

re库主要功能函数

在这里插入图片描述

1)re.search( )

在这里插入图片描述
在这里插入图片描述

import re
match = re.search(r'[1-9]\d{5}','BIT 100081')
if match:
    print(match.group(0))

在这里插入图片描述

2)re.match( )

在这里插入图片描述

3)re.findall( )

在这里插入图片描述

import re
ls = re.findall(r'[1-9]\d{5}','BIT100081 TSU100084')
print(ls)

在这里插入图片描述

4)re.split( )

在这里插入图片描述

import re
ls1 = re.split(r'[1-9]\d{5}','BIT100081 TSU100084')
print(ls1)
ls2 = re.split(r'[1-9]\d{5}','BIT100081 TSU100084',maxsplit = 1)
print(ls2)

在这里插入图片描述

5)re.finditer( )

在这里插入图片描述

import re
for i in re.finditer(r'[1-9]\d{5}','BIT100081 TSU100084'):
	if i:
		print(i.group(0))

在这里插入图片描述

6)re.sub( )

在这里插入图片描述

import re
print(re.sub(r'[1-9]\d{5}','zipcode','BIT100081 TSU100084'))

在这里插入图片描述
注:在使用sub的替换时,无法替换掉“\n”换行符,需先将“\n”替换为空或者空格,再进行替换

re.compile( )

在这里插入图片描述

re库的另一种等价用法

在这里插入图片描述

3.re库的match对象

match对象的属性

在这里插入图片描述

match对象的常用方法

在这里插入图片描述

import re
m = re.search(r'[1-9]\d{5}','BIT100081 TSU100084')
print(m.string)
print(m.re)
print(m.pos)
print(m.endpos)
print(m.group(0))
print(m.start())
print(m.end())
print(m.span())

在这里插入图片描述

4.re库的贪婪匹配和最小匹配

Re库默认采用贪婪匹配,即输出匹配最长的子串。

import re
match = re. search(r'PY.*N','PYANBNCNDN')
print(match.group(0))

在这里插入图片描述
当我们需要re库的最小匹配时,只需进行如下修改:

import re
match = re. search(r'PY.*?N','PYANBNCNDN')
print(match.group(0))

在这里插入图片描述

最小匹配操作符

在这里插入图片描述

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 深度学习是一种机器学习技术,可以通过模拟人类大脑的神经网络结构来实现智能决策和预测。Python是一种广泛使用的编程语言,也是深度学习中使用最多的语言之一。 如果你想入门深度学习并使用Python进行实现,可以参考一些经典的教材和资源,例如《Python深度学习》(Francois Chollet著)、《深度学习入门:基于Python的理论与实现》(斋藤康毅著)等。这些教材通常会介绍深度学习的基础理论、Python的基本语法和深度学习框架(如TensorFlow、Keras等)的使用方法,同时也会提供一些实例代码和练习题帮助你快速上手。 此外,你也可以通过在线课程和MOOC平台学习深度学习Python编程。例如,Coursera、Udacity和edX等平台都提供了相关课程,可以根据自己的需求和兴趣进行选择。 ### 回答2: 深度学习入门:基于Python的理论与实现,是一本介绍深度学习的较为全面的教程。本书主要介绍了人工神经网络,包括基于反向传播算法的多层感知器、卷积神经网络、循环神经网络等基本模型以及它们的实现方法,同时还介绍了一些高级话题,如深度强化学习、生成模型等等。 在本书中,作者通过大量的编程实例来演示深度学习的应用。这些实例包括用深度学习算法进行手写数字识别、图像分类、语音识别和自然语言处理等任务。由于Python是目前流行的机器学习工具之一,因此这本书的实现过程都使用了Python编程语言。 具体来说,本书的主要内容包括人工神经网络基础知识、多层感知器模型、卷积神经网络模型、循环神经网络模型、生成模型、 强化学习、深度学习框架等方面,同时还包括很多深度学习的应用案例。作者采用了基础理论、数学公式、实例程序和实验数据等不同形式的阐释方法,使读者既能够理解深度学习的基本原理,也能够掌握它的实现方法。 此外,本书还提供了大量的参考文献和网上资源,使读者可以进一步深入学习和研究深度学习。在阅读本书的同时,读者可以根据作者提供的代码和数据,通过实际操作来进一步巩固理论知识和应用技能。 总之,深度学习入门:基于Python的理论与实现是一本非常实用的深度学习教材,可以帮助初学者更好地了解深度学习的基本概念和方法,提高实际应用的技能。 ### 回答3: 深度学习是一种人工智能技术,可用于训练计算机识别和理解大量数据。《深度学习入门:基于Python的理论与实现》这本书是入门者学习深度学习的必读之书。以下是本书的内容概述。 本书的第一部分介绍了深度学习的基础概念和理论,包括神经网络、反向传播算法、损失函数等。介绍了基本的深度学习模型,如前馈神经网络、卷积神经网络和循环神经网络。此外,还介绍了优化算法和正则化技术。 在第二部分中,作者使用Python编程语言实现了各种深度学习模型,使用的是许多广泛使用的深度学习框架,如TensorFlow和PyTorch。学习者获得从头开始编写深度学习算法的经验,同时实际应用中必备的PyTorch和TensorFlow经验。 在第三部分中,本书涵盖了几个应用案例,包括图像分类、语音识别和自然语言处理。幸运的是,这些案例通过代码演示展示,确保即使您没有实际应用经验也能操作成功。 总的来说,《深度学习入门:基于Python的理论与实现》是一本适合想要学习深度学习的初学者的绝佳书籍。其提供了深度学习的基本理论和核心技术,同时应用Python编程语言演示了实现技术。由此学习者可以建立深度学习专业的技术栈和能力,在人工智能领域有更广阔的发展空间。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dragon水魅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值